
Received October 23, 2018, accepted November 9, 2018, date of publication November 16, 2018,
date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2881699

DexMonitor: Dynamically Analyzing and
Monitoring Obfuscated Android Applications
HAEHYUN CHO 1, JEONG HYUN YI 2, (Member, IEEE),
AND GAIL-JOON AHN 1,3, (Senior Member, IEEE)
1Center for Cybersecurity and Digital Forensics, Arizona State University, Tempe, AZ 85281, USA
2Cyber Security Research Center, Soongsil University, Seoul 06978, South Korea
3Samsung Research, Samsung Electronics, Seoul 06765, South Korea

Corresponding author: Jeong Hyun Yi (jhyi@ssu.ac.kr)

This work was supported in part by the Institute for Information and Communications Technology Promotion through the Korea
Government under Grant MSIT 2017-0-00168, in part by the Automatic Deep Malware Analysis Technology for Cyber Threat
Intelligence, and in part by the Global Research Laboratory Program through the National Research Foundation of Korea through
the Ministry of Science, ICT, and Future Planning under Grant NRF-2014K1A1A2043029.

ABSTRACT Both Android application developers and malware authors use sophisticated obfuscation tools
to prevent their mobile applications from being repackaged and analyzed. These tools obfuscate sensitive
strings and classes, API calls, and control flows in the Dalvik bytecode. Consequently, it is inevitable for
the security analysts to spend the significant amount of time for understanding the robustness of these
obfuscation techniques and fully comprehending the intentions of each application. Since such analyses
are often error-prone and require extensive analysis experience, it is critical to explore a novel approach to
systematically analyze Android application bytecode. In this paper, we propose an approach to address such
a critical challenge by placing hooks in the Dalvik virtual machine at the point where a Dalvik instruction
is about to be executed. Also, we demonstrate the effectiveness of our approach through case studies on
real-world applications with our prototype called DexMonitor.

INDEX TERMS Bytecode monitoring, Android application analysis, mobile security.

I. INTRODUCTION
Smartphones are exploding in popularity and functionality.
Mobile operating systems that run on smartphones allow
third-party developers to develop mobile applications that
take advantage of the features of mobile devices. These
mobile applications have influenced diverse sectors such as
financial, government, entertainment, and healthcare sectors.

Among all the mobile operating systems, Google’s
Android leads the largest market share and the reports indi-
cate that the Google Play, which is the official application
store for Android, has around 1.4 million applications avail-
able with over 50 billion application downloads [19], [40].

Android applications are typically written in Java, which
are compiled to bytecode that runs on a Java virtual machine,
called the Dalvik Virtual Machine (Dalvik VM). Such a
Dalvik bytecode is typically ‘‘simpler’’ for static analysis,
compared to the traditional binary code for desktop systems
(x86 and and x86-64), which results in a rise of Dalvik
decompilers that transform Dalvik bytecode back to Java
code [9], [14]. Also, Dex files containing bytecode can
be converted into smali code using a disassembler such as
bakSmali [16]. The smali code, containing a lot of

information such as Android API information within the
Dalvik’s instructions [6], becomes a major target of app
analysis.

Unfortunately, malicious actors also take advantage of
the ease of decompiling Android applications and can per-
form repackaging attacks on Android applications [27], [30].
A repackaging attack happens when a paid or free application
in the market is illicitly reverse-engineered, modified, and
then redistributed by attackers rather than its original devel-
opers. The goal of the attacker is to either insert malicious
code in the repackaged application or modify the advertising
library to use the attacker’s own code so that the attacker can
obtain monetary gains from the advertisements. To address
such issues, Android application developers use various
obfuscation techniques to make their applications more diffi-
cult for attackers to dissect. Consequently, rogue application
developers can also use these obfuscation techniques to hide
malicious behaviors in an application.

The most commonly used obfuscation techniques on
Android applications [35] include: (1) string encryption
that encrypts sensitive strings used in applications [1], [10],
[11], [17]; (2) class encryption that hides an entire class

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

71229

https://orcid.org/0000-0002-5344-5252
https://orcid.org/0000-0002-2720-0593
https://orcid.org/0000-0002-4271-1666

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

by encrypting it and removing it from classes.dex
[10], [11]; (3) identifier renaming that makes reverse-
engineered programs less readable by changing the identifiers
in an application [1], [10], [11], [17], [36]; (4) control flow
randomization that makes the control flow of a program dif-
ficult to understand [28]; (5)API hiding that hides invocations
of sensitive APIs, such as cryptographic functions, by using
Java reflection [10], [11]; and (6) virtualization-based pro-
tection that encodes Android bytecode to virtual instructions
and uses special virtual machines to execute such instruc-
tions [44]. These techniques are widely used in Android
application obfuscators, including Stringer [17], Allatori [1],
DexProtector [11], DexGuard [10], and DIVILAR [44].

Static analysis of obfuscated Android applications is
tedious and error-prone, and requires extensive analysis expe-
rience. In addition, static analysis can be easily defeated
by encryption-based obfuscation techniques. Therefore, it is
imperative to develop novel ways to analyze obfuscated
applications. In addition, it would help achieve the follow-
ing goals: (1) extraction of malicious applications’ hidden
bytecode prior to any in-depth analysis; (2) measurement of
the effectiveness of the obfuscators; and (3) understanding
of design requirements for building more robust obfuscation
techniques.

In this paper, we propose an approach called DexMonitor
to place hooks in the Dalvik VM at the point where a Dalvik
instruction is about to be executed. Due to the nature of
program execution, obfuscated segments must be revealed
by the application itself at this point. By finding this point
and intercepting the code and data when the program counter
reaches this point, we can generate a view of the disclosed
code and data without knowing how the applications were
obfuscated. As a consequence, DexMonitor can obtain appli-
cations analyzable by providing code and data under the
situation where the code is concealed.

The main contributions of this paper are the following:
• We propose a novel approach to analyze Android appli-
cations by selectively intercepting Dalvik instructions.

• We implement a prototype, called DexMonitor, by
modifying the Dalvik VM.

• We demonstrate the effectiveness of DexMonitor
through case studies.

The remainder of the paper is organized as follows. In
Section II, we overview the background knowledge and com-
pare existing obfuscators. We articulate our proposed system,
DexMonitor to automatically deobfuscate Android applica-
tions in Section III. We discuss the implementation and eval-
uation results in Section IV. In Section V, we describe the
challenges and limitation of our work. We conclude the paper
in Section VII.

II. BACKGROUND
A. DALVIK VIRTUAL MACHINE
Dalvik is the virtual machine used in Android operat-
ing system. At the booting stage of Android, a process
zygotewaits for the request of launching a new application.

When such a request arrives, zygote forks itself and ini-
tializes Dalvik VM for the new application, and then the
Dalvik VM will load the application’s classes.dex file.
Normally, dex files are optimized by the Dex Optimizer
dexopt, that is a component of Dalvik, before being
executed [8]. dexopt sets byte ordering and struc-
ture alignment, replaces certain instructions, such as
invoke-virtual, and performs method inlining during
the dex file optimization. Because method inlining changes
the instructions for invoking operations, it must be avoided
to faithfully record what has been executed in an application.
The interpreter, which is the main part of Dalvik VM, inter-
prets Dalvik bytecode into architecture-specific binary code.
From the version 2.2 of Android, Dalvik has a just-in-time
compiler (JIT) for improving the runtime performance.While
an application is running, the JIT analyzes Dalvik bytecode
and actively translates hot parts into the optimized native
code [7], [23]. Therefore, it is necessary to disable JIT for
the monitoring purpose.

The main feature of the Dalvik VM is the execution of
the dex file. Instructions executed in the Dalvik VM are
called Dalvik instructions. The Dalvik VM actually converts
Dalvik instructions into machine language compatible to
the CPU architecture of the mobile device. Figure 1 shows
how the Dalvik VM executes a dalvik instruction. Dalvik
VM uses 16-bit instruction set. Thus, the Dalvik program
counter increases 16-bit and the pointed instruction executes
according to its defined operation where operands are parsed
and the program counter is changed for the next instruction.

FIGURE 1. Bytecode execution process on Dalvik VM.

B. DALVIK BYTECODE OBFUSCATION
Since Dalvik is the process VM in Android, we use the terms
Davik bytecode and Android application bytecode inter-
changeably in the rest of this paper. Obfuscation techniques
have been proposed for Dalvik bytecode to hinder reverse
engineering and APK repackaging. The most commonly

71230 VOLUME 6, 2018

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

TABLE 1. Comparing android application obfuscators.

used obfuscation techniques [35] include string encryption,
class encryption, identifier renaming, control flow random-
ization, API hiding, and virtualization-based protection.
Some Android application obfuscators in the market or from
academia include Stringer [17], Allatori [1], DexProtec-
tor [11], DexGuard [10], and DIVILAR [44]. Table 1 com-
pares the features of these tools. Since DexProtector and
DexGuard provide most features that are offered by the other
tools, we will revisit these obfuscation schemes along with
DexMonitor in the Section III.
DexProtector works directly on Dalvik bytecode, and it

provides both string encryption and class encryption. The
string encryption feature encrypts strings used in an appli-
cation to protect sensitive information, such as a program’s
license information or hash value for tampering detection by
using AES for string encryption. DexProtector can also hide
APIs called within an application. An application obfuscated
by DexProtector can intentionally trigger a system error to
force the application to be closed, when the application is
repacked. DexGuard provides similar features as DexPro-
tector does. However, it is a backend compiler that comes
with Android SDK and works on Java source code instead
of bytecode. Figure 2 shows the examples of obfuscated
code snippets which were generated by DexProtector and
DexGuard respectively. As shown in the Figure, obfuscation
schemes make the static analysis very difficult by concealing
information that is critical for understanding behaviors of
applications such as strings, API names, and even identifiers.

C. OTHER PROTECTION METHODS
With the threat of the repackaging attack, various protec-
tion schemes such as tamper detection, anti-analysis schemes
have been emerged [21]. Tamper detection scheme is to pre-
vent tampering of applications. In case of that tamper detec-
tion scheme is applied, detecting module of the application
checks the application to verify its integrity and, based on
the result, the module determine whether to execute. In addi-
tion, to secrete the tamper detecting routine, obfuscation
methods such as class encryption could be used and there
is a tamper detection scheme using the server in which the
detecting routine is located [35]. Analyzers sometime insert
logging code in the classes.dex file to figure out specific
values or conditions. However, with the tamper detection
schemes, repackaging the APK file is hard pressed.

FIGURE 2. Obfuscation examples. (a) String encryption and API hiding
(DexProtector). (b) Identifier renaming (DexGuard).

On the other hand, there are methods protecting appli-
cations from the analysis. For examples, method conceal-
ment [20], the manifest file modification [4], and altering the
header of ZIP file [13] schemes are used to prevent static
analysis. Also, anti-debugging methods [24] and emulator
detecting methods [29], [34], [38] could be employed against
dynamic analysis. Because malicious applications, of course,
can use those protection schemes, we need an analysis system
which can be harnessed effectively on various protection
methods.

III. DexMonitor
The major objective of DexMonitor is to make an applica-
tion analyzable by providing executed bytecode with files.
Given that a lot of protection techniques prevent applications
from being analyzed. Especially encryption-based protection

VOLUME 6, 2018 71231

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

techniques prohibit analyzers from acquiring concealed code
and data.

The outputs, produced on Dalvik VM, of DexMoni-
tor are instructions as a form similar to smali with the
detailed information, in which the instructions are included,
loaded dynamically. With the outputs, encrypted bytecode,
string or any dynamically loaded bytecode can be revealed.
Therefore, based on the outputs, we can easily analyze
protected applications. In addition, DexMonitor extracts all
executables dynamically loaded. By providing hidden exe-
cutable files which cannot be found statically, it makes a deep
analysis possible easily.

Even though similar ideas have appeared in previous
approaches to decrypt online streaming content [39] and
sensitive malware strings [43], applying it to analyze
Dalvik bytecode has some unique technical challenges. First,
it requires a complete understanding of Dalvik VM. We
build DexMonitor based on the accurate bytecode execution
process of Dalvik VM and its related components for hav-
ing a view of the revealed code and data without knowing
how an application’s obfuscation and encryption algorithms
work. Another challenge is to construct practical outputs
for an effective analysis. To achieve this, DexMonitor pro-
duces instructions that has a smali-like format comparable to
the original smali instructions disassembled from dex files,
which helps analyzers to see the original form of executed
instructions. On the other hand, DexMonitor provides detail
data of an instruction’s operands such as strings or numerical
values of them. Therefore, analyzers can grasp the context of
an instruction and can easily find critical values that affect
execution states of an application.

A. DESIGN GOALS
We first articulate a list of design goals that are considered
and accommodated in DexMonitor.

1) IN-THE-BOX DESIGN
The Dalvik instruction tracer of DroidScope [12], [42], that
is a virtualization-based and out-of-the-box approach, can
be modified to realize the similar basic idea by intercept-
ing code and data at the same point of program execu-
tion. However, an in-the-box design that modifies Dalvik
VM directly instead of using virtual machine inspection has
the following advantages.

i) Anti-emulation, anti-debugging proof. Android appli-
cations thwart dynamic analysis by detecting their running
environments. If an emulator is detected, an application could
change its behavior or simply crash itself. Recent studies have
shown that there exist many ways for Android applications to
tell if it is running in an emulator [29], [34], [38]. In addition,
anti-debugging methods can hinder an analysis by checking
the debugging environment [24]. By directly changing the
Dalvik VM and running it on bare-metal, we can minimize of
risk of being detected by the analyzed applications. Note that
our approach still allows analysts to run the modified VM in
an emulator which provides then an option to use bare-metal

analysis. Analysts can still run our system of the modified
Dalvik VM in an emulator if they need.

ii) No semantic gap. Direct modification of the Dalvik
VM is easier to implement, since the proposed approach runs
with the Dalvik VM and sees all the symbol information
that is necessary for monitoring and analysis. On the other
hand, a virtualization-based approach has to reconstruct the
semantic gap between the low-level view from the virtual
machine monitor and the Dalvik-level view.

iii) Minimal performance overhead. Virtual machine
inspection introduces significant performance degradation.
Large-scale Android application analysis may not be feasible
due to such a critical limitation. By directly modifying the
Dalvik VM and selectively monitoring, it is guaranteed to
introduce minimal performance overhead.

2) SELECTIVE MONITORING
If a system simply outputs all executed Dalvik instructions
as the Dalvik instruction tracer of DroidScope [42] does, it
will produce many instructions that are not part of Android
applications. These instructions may come from Android
application framework, Android Libraries, etc. Outputting
such instructions without knowingwhere they are fromwould
make subsequent analysis steps more complicated. To cope
with this challenge, it is necessary to know which Android
application, thread, class, or method is executing on the
Dalvik VM and only outputs the traces of analyst-specified
applications, classes or methods. With such a design, we can
also check the method flow of applications by monitoring
only invoke and return instructions.

B. BUILDING BLOCKS OF DexMonitor
To meet the aforementioned design goals, DexMonitor
monitors the execution of Dalvik instructions at run time
and outputs the observed information for further analysis.
DexMonitor consists of several modules that reside in Dalvik
VM. As shown in Figure 3, DexMonitor is comprised of

FIGURE 3. The architecture of DexMonitor.

71232 VOLUME 6, 2018

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

three major components: Monitoring Trigger, OP-Interpreter,
and Instruction Monitor.

1) MONITORING TRIGGER
To achieve selective monitoring, DexMonitor takes a con-
figuration file as an input, which includes the applications,
classes, and methods a security analyst wants to monitor.
Monitoring trigger is responsible for reading this config-
ure file. Each line of this configuration file is a string that
indicates a package, class, or method to be monitored. For
example, com.example | 1 | com/example/SecretClass |
all in a configuratin file means DexMonitor should mon-
itor all methods of the class com/example/SecretClass
in the thread 1 of the application its package name is
com.example. The number of thread is a number managed
by Dalvik VM and if the value of thread is 0, it indicates
all threads are monitored. Furthermore, there are 3 on/off
options: extracting executable files, extracting parameters
when invoking method, and extracting only invoke and
return instructions. For instance, options of extract-
File=off, extractParam=on, extractInvokeOnly=on sig-
nify that DexMonitor does not extract the executable files
containing bytecode and outputs only instructions regarding
method call and return with information of parameters. If the
option extractFile is on, DexMonitor extracts all executable
files (in dex, jar, APK, ZIP and so format) loaded by the
application.

Upon the launch of an application, DexMonitor reads
the configure file and compares the package names written
in the file with the launched application’s package name
before the Dalvik VM invokes the interpreter. A global
structure that defines the monitoring range is declared in
the dalvik/vm/Globals.h. The global variable is ini-
tialized in the dvmInitAfterZygote function in the
dalvik/vm/Init.cpp file, so it can be ready before the
interpreter is started.

2) OP-INTERPRETER
In the Dalvik VM, the dvmInterpret function in the
dalvik/vm/interp/Interp.cpp file is the entry
point of the interpreter. It calls an actual interpreter based
on which execution mode it is in. For example, if the
WITH_JIT variable that is declared in Android.mk is
TRUE, the ModeJit interpreter is chosen at compile time
and the dvmMterpStd interpreter is called by function
dvmInterpret at runtime. We introduce a hook in the
dvmInterpret function to invoke our OP-Interpreter.
Before an instruction is executed, OP-Interpreter deter-

mines whether the instruction should be recorded or not.
The parameters of invoke or return instructions are also
taken into consideration if such an instruction should be
recorded. If a target method invokes some Android APIs,
such as loadLibrary, it does not extract the instruc-
tions of loadLibrary but just the instruction that invokes
loadLibrary and the instruction return that has the
return value, instead. To do so, DexMonitor checks the

parameters of invoke or return instructions to get infor-
mation about which method is called or where to return. To
get such information, DexMonitor uses the class descrip-
tor and method descriptor. The class descriptor would be
obtained from ClassObject structure which is declared
in the dalvik/vm/oo/Object.h file. The method name
would be found from the method structure which is declared
in the same file. The Method descriptor can be also extracted
by calling the dexProtoCopyMethodDescriptor
function.

3) INSTRUCTION MONITOR
Instruction Monitor actually outputs the monitored instruc-
tions with the thread ID managed by Dalvik and other infor-
mation. Especially when instructions are associated with
string object or in case of returning the string object, it can
output the character string which is managed by the string
object. For a method call statement, the class descriptor,
method name, method descriptor of the callee method and
parameters are generated. For a return statement, the return
value is generated as well. string object along with the execu-
tion code.

4) EXECUTABLE FILE EXTRACTOR
To get concealed executable files, we placed hooks on
the scattered points that load executable files such as
dvmJarFileOpen or dvmLoadNativeCode to extract
dynamically loaded files including APK file. Those hooks
copy the files to the predesignated directory when the
functions load executable files if the options is set in the
configure file.

IV. IMPLEMENTATION AND EVALUATION
We developed a prototype of DexMonitor on Android ver-
sion 4.4.4 [3]. Some modules of DexMonitor, such as OP-
Interpreter and Instruction Monitor, were modified from
existing Dalvik VM source codes, whereas other mod-
ules were developed from scratch. DexMonitor consists
of 1,042 SLoC. The modified Android system was flashed
to a Nexus 5 phone for experiments. For aforementioned
reasons, we disabled JIT andmodified thedexopt to prevent
it from rewriting invoke-virtual, invoke-static,
and invoke-direct instructions.

In addition, we developed SmaliParser which filters the
extracted outputs to be compatible for analysis. DexMoni-
tor output code is sent to SmaliParser, which is comprised
of Thread Parser and Callstack Analyzer. Thread Parser
increases the readability of the outputted code for effective
analysis. Because Dalvik virtual machine is used on many
threads, a procedure that separates the outputted code by
thread is needed. To the end, Thread Parser sorts out the
code outputted by DexMonitor by thread number. Callstack
Analyzer distinguishes the calling stack between the caller
method and calleemethod and is structured to display through
an indentation after the callee method code and caller method
code.

VOLUME 6, 2018 71233

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

To evaluate the effectiveness of DexMonitor, we selected
three commercial applications which are protected by obfus-
cation and tamper detection schemes to prevent the repack-
aging attacks. Target applications are one mobile antivirus
application, two mobile banking applications and mobile
malware. We inspected these applications with DexMonitor
to find a vulnerability of their tamper detection schemes and
then we emasculated them. In the figures used for showing
analysis results of DexMonitor, all lines beginning with ‘#’
refer to comments for explanations on the following instruc-
tions. The other lines are DexMonitor’s outputs.

A. ANTIVIRUS APPLICATION: QIHOO 360
SECURITY V.3.4.2
Qihoo antivirus application is top ranked mobile security
application in the Android play store. It scans a mobile
device for searching malware in real-time as well as updates
its antivirus database dynamically, also it can boost speed
of the mobile device by cleaning caches or freeing mem-
ory. If this application could be hacked and distributed by
adversaries, they can bypass the malware detection module
to consider their malware as a normal application. Thus,
in case of antivirus applications, strong protection schemes
are essential.

Protection schemes applied to the application are obfus-
cation, anti-rooting, and tamper detection and it also loads
jar files dynamically. When we just repacked the application
to observe the tamper detection scheme, a crash report was
appeared repetitively by its tamper detection routine as shown
in Figure 4.

To find a tamper detection routine of the application, we
first used ‘‘invoke-only’’ option of DexMonitor to get original
control flow of methods and repacked one before the crash
report was shown. Based on a simple comparison, we could
figure out a method which returns a Boolean value. The
method returned 1 for original one and 0 for repacked one.
Also, that method was called by using the reflection because
the method is not in the classes.dex, a main executable
file of an APK file, but in the oclt.jar file loaded dynami-
cally. Hence, the tamper detection routine could not be found
through static analysis of the classes.dex file.

Furthermore, we were able to modify the method in the
oclt.jar file to subvert the application’s tamper detection
scheme.

B. MOBILE BANKING APPLICATIONS
1) CASE I: H BANKING APPLICATION V.4.41
In the case of banking application, security is the prime
concern for users to prevent problems such as [30]. H bank-
ing application uses obfuscation schemes including string
encryption and anti-rooting schemes to protect the applica-
tion. The application is also protected by a tamper detection
scheme using a server so that if the application is tampered,
application process will be halted along with the error report.

Server based tamper detection scheme checks integrity
of the application by responding the application’s request.

FIGURE 4. Analysis results of Qihoo360. (a) Method flow of Qihoo 360.
(b) The tamper detection routine.

However, it has a vulnerability that the application decides
whether to be executed or not based on the response of the
server at the method in the application. Therefore, if we find
the method which deals with the response from the server
and find the value from the server, we can bypass the tamper
detection routine, although the integrity checking routine is
operated by the server separately.

We found a branch point through DexMonitor and impor-
tant values made by the method which receives the response
from the server. Firstly the server sends the response using
JSON object and then the result of integrity checking is saved
on the device.

As shown in Figure 5, application’s integrity is decided
by the values stored in the register v0 and v1. Therefore,
the tamper detection scheme of the application could be
neutralized by inserting just two lines of smali code to modify
the values.

2) CASE II: W BANKING APPLICATION V.1.1.8
This banking application uses more complicated tamper
detection scheme, which uses a attestation server and a sub
process, than other applications tested in our case study.

71234 VOLUME 6, 2018

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

FIGURE 5. Analysis result of H banking application.

Sub process of W banking application interacts with the
server and with the app process using the binder. The
application’s attestation process is comprised of challenge
response authentication protocol between the server and the
sub process. In their protocol, a challenge is designated
as CODE_CHALLENGE and a response is designated as
CODE_RESPONSE. When the W banking application is
tampered, the server does not permit a user to login so that
the user cannot use any banking service with the tampered
application. Analyzed tamper detection architecture through
DexMonitor is shown in Figure 6.

FIGURE 6. The Tamper detection architecture of W banking application.

As illustrated in Figure 6, when the applications are started,
it starts its tamper detection scheme by sending a request to
its sub process and then the sub process attempts to download

a native library from the server. We could find the URL
for downloading the library and obtain the file by monitor-
ing with DexMonitor. The sub process starts to inspect the
integrity of the application after the library’s checksum is
checked. It tries to get the CODE_CHALLENGE with the
application’s information such as name and version from
the server. For the next step, the sub process sends the
CODE_RESPONSE to the server as soon as the downloaded
native library generates it. The sever shows examination
result of the CODE_RESPONSE and the application saves
the result.

When a user login to the server, the saved result is
sent to the server appending with the CODE_RESPONSE,
user ID, password, device ID and so on. Hence, if the
server tracks the CODE_RESPONSE with respect to the
CODE_CHALLENGE to attest the application, the W bank-
ing application’s tamper detection scheme would not be
bypassed. However, the application’s tamper detection
scheme is subverted by the replay attack, because the
server did not record the code_challange issued by the
server with the code_response. The server only checks a
CG_SIGNATURE field of the result, they deny access to the
server just in case of the ‘‘CODEGUARD_VERIFICATION_
TOKEN_FAIL’’ string is included.

In addition, we found that the data used for login could be
used again on other devices as shown in Figure 7. Therefore,
if we make a tampered application which steals user’s
secret data, we can login with the stolen data on a device
since the data contains encrypted password and other secret
values.

FIGURE 7. JSONobject containing user’s secret data.

C. REAL-WORLD MALWARE
We used DexMonitor to analyze a real-world malware which
is called google app stoy [18]. When google app stoy is
installed, it shows an icon similar to Google play store on the
home screen. When a user clicks this icon to launch google
app stoy, it shows a message ‘This app is uninstalled
because of Program error’ and appears to be terminated.
However, it still runs some Android services.

To analyze the malware, we used DexMonitor to print out
the executed code of google app stoy. DexMonitor output

VOLUME 6, 2018 71235

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

FIGURE 8. Analysis results on a real-wrold malware. (a) The process of loading the encrypted classes. (b) The CODE_CHALLENGE.

shows google app stoy first opens a file named ds inside
the Asset directory, which is a file that includes encrypted
malicious classes. Figure 8-(a) shows how ds file is decom-
pressed and the malicious classes are loaded to the memory.

After reading ds file inside the Asset directory, the secret
key, directory where the decrypted files should be stored, file
name, and the encryption algorithm must be used as param-
eters to decrypt the ds file. Also, by using Java reflection,
loadDex method is called and loads the decrypted classes
into the memory and executes them.

Since classes inside ds file are android services, general
users cannot realize that the service is running. Even if the
users realize that the services are running, it is hard to remove
it completely because a deletion prevention scheme is applied
to the app.

Continuously, DexMonitor was used to analyze after
loading processes of the decrypted classes. As a result,
classes.dex which is a output from the ds file starts
services such as autoRunService, upload ContentService,
UninstallerService, SoftService, and uploadPhone.

Each service removes installed vaccine programs and
sends information such as phone number list, certificate, etc.
to the attacker’s Gmail, while sending personal information
included inside the SMS to the attacker’s server.

As shown in Figure 8-(b) we can confirm what the google
app stoy app does by using DexMonitor.

D. PERFORMANCE EVALUATION
To evaluate the performance overhead of DexMonitor, we
used two benchmark applications, namely Benchmark for
Android [2] and SciMark [15]. Both applications measure the
CPU and memory performance of the modified Android sys-
tem by running multiple benchmark tests. The suite includes
several popular benchmarks such as WhetStone, LinPack,
QSort, Ackermann and Sieve of Eratosthenes. Each test is run
in a native context, coded in C++, and in a managed/Dalvik
context, coded in Java. In addition, both tools are used to
measure efficiency of Dalvik VM and CPU.

Evaluating the performance of DexMonitor is correlated
with only Dalvik VM. Thus, we ran the tools for bench-
marking Dalvik, and compared the performance differences
between monitored state and non-monitored stated. A mon-
itored state means that we ran the benchmark tool with
DexMonitor as monitoring all methods of the applications.

All experiments were performed on a LG Nexus 5 built
with the same platform mentioned in the earlier section. The
units in Android Bench are milliseconds (ms) and in SciMark
are millions of floating point operations per second (Mflops).
The results are shown in Figures 9 and 10.

When DexMonitor monitors instructions, the perfor-
mance degradation is noticeable. This result ensures that all
proposed tasks are reasonably performed as illustrated in
in Figures 9 and 10. Even though the user of DexMonitor

71236 VOLUME 6, 2018

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

FIGURE 9. Benchmark results using Android bench.

FIGURE 10. Benchmark results using SciMark.

selects a small region from the monitor, DexMonitor should
monitor all methods calling instructions to determine whether
the instruction is contained within the region selected by
a user or not. Also, if the region includes the instruction,
it needs additional work such as finding a string, printing out
the instructions and so on.

V. DISCUSSION
Lipp et al. [33] has recently demonstrated that a malicious
android application without any permission or privilege can
monitor keystroke. These sophisticated attack techniques are
driving the need for the sophisticated analysis methods. The
first purpose of DexMonitor is to make an application ana-
lyzable. By tracing the Dalvik instruction to be executed,
DexMonitor can automatically generate a trace of the actual
Dalvik instructions that are executed by an application and
can output its executable files. Hence, DexMonitor effec-
tively can be used for analyzing applications which employ
protection schemes based on code concealment such as code
encryption and dynamic loading, which cannot be analyzed
by static analysis. Providing unveiled executable files regard-
less of location of files or protection methods, it would be
great service to analyzers.

There are several challenges that must be tackled to trans-
form this approach into a complete analysis system. First,
there is the issue of native code execution. Since it exe-
cutes outside the Dalvik VM, DexMonitor is unable to see
and trace it. However, we can reveal JNI code which calls
Android APIs or user methods. Second, as addressed in
traditional dynamic analysis environment for malware [26],

malware can use timing analysis to detect analysis environ-
ments. As DexMonitor has significant overhead, it could
be possible for malware to use this overhead as a timing
channel. However, as our initial implementation of DexMon-
itor is a prototype, we believe that the performance could
be optimized and improved in the future. Finally, there is
the significant challenge of analyzing Virtualization-based
Protection which is another critical challenge in traditional
desktop software and needs more considerable attention.

Since the Lollipop (Android version 5.0), Dalvik VM has
been replaced with the ART runtime to improve the per-
formance. The ART runtime uses an OAT file produced
by ahead-of-time (AOT) compilation instead of a dex file.
However, android applications are still implemented by using
Java and packed as the APK file format containing a dex file
which is the input of AOT compilation. In addition, android
uses the Dalvik VM in the ART runtime since some tech-
niques cannot be executed on the ART runtime [5]. Therefore,
there is a distinct possibility in implementing DexMonitor on
a higher version of android than the current prototype. Our
prototype of DexMonitor can be even used to analysis up-to-
date applications if those applications are implemented with
minimum SDK version lower than 4.4.4.

VI. RELATED WORK
We believe that DexMonitor can represent a first step toward
a fully automated deobfuscation system, since it can reveal
all hidden code and can generate the detailed tracing results
such as parameters, fields, retrun values, strings as well as
executable files. Deobfuscation is an important part of the
mobile application security ecosystem, even though the chal-
lenge of automatically deobfuscating a mobile application is
difficult. It is clear that there will be an arm race between
obfuscators and deobfuscators. The centralized application
store model allows mobile operating system developers to
vet applications (unlike the traditional desktop computing
environment). To evaluate potential applications for being
included the in centralized market, applications should be
analyzed, both statically and dynamically, against malicious
behaviors. Obfuscation tools allow malicious developers to
hide and mask malicious behaviors, thus bypassing the mar-
ket vetting process. Therefore, automated deobfuscation is
an important technique to reveal the hidden behaviors of
applications so that traditional static analysis techniques can
be further applied for protecting users.

DexMonitor’s related works as follows. RAMSES [25] is
a static analysis tool for characterizing malware by using
constant strings. Even though this tool can be used as a
first analysis to filter benign applications out, it cannot be
utilized when the string encryption scheme is simply applied
on applications. Li et al. [32] proposed a systematic proce-
dure for recovering malicious events of Android malware.
However, they manually recovered encrypted strings which is
one of the most important data containing server addresses,
command names, etc. While DexMonitor can output
decrypted strings automatically.

VOLUME 6, 2018 71237

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

TraceDroid framework [37] was proposed for dynamic
analysis of Android applications to detect suspicious, pos-
sibly malicious applications. However, it only traces API
calls, and thus, it cannot provide detail information on an exe-
cutable itself for a complete analysis. Kim et al. [31] designed
DWroidDump to extract the main executable code from the
memory as an effective analysis preliminary. DexMonitor has
this functionality in more efficient way, not requiring compli-
cated memory analysis technique. Furthermore, DexMonitor
can be used to track more detail information regarding
dynamically loaded executable such as where it comes from
or when it is loaded.

Bichsel et al. [22] proposed a method to deobfuscate lay-
out obfuscations schemes such as the identifier renaming.
It showed very promising results by predicting names of
obfuscated identifiers through their statistical model. The
most recently, Wong and Lie [41] have presented TIRO,
which can automatically detect and reverse language-based
and runtime-based obfuscation via dynamic instrumenta-
tions. We believe that DexMonitor can be utilized generally
as a groundwork for research works similar to the above ones
by providing accurate information on executed instructions
and executable files.

VII. CONCLUSION
Since statically analyzing (potentially malicious) Android
applications is tedious and requires tremendous expertise,
we proposed an new approach to analyze Android bytecode.
The core idea of our proposed approach is to place hooks in
the Dalvik VM at the point where a Dalvik instruction is
about to be executed. We have chosen an in-the-box design
for its advantages over a virtual machine inspection solution
by directly modifying the Dalvik VM. We have shown the
effectiveness and performance of our approach by evaluating
on various Android applications.

APPENDIX A
OUTPUTS OF DexMonitor
A. EXECUTED BYTECODE
DexMonitor prints out all executed bytecode in the rage of
a user selects. It can handle all kinds of bytecode of Dalvik
VM. Also, it provides the detailed information depending on
the operation code such as invoke, return, and so on. Listing 1
shows an example of bytecode that DexMonitor generated.

Basic form of the output bytecode is like |Thread
number|Operations. In addition, as you can see in Listing 1,
all executable files loaded dynamically are remained in the
log with the function name which loads the file and, when
the option for parameters is set, parameters are printed like
lines 5-6. In cases of operations regarding fields such as
sget or sput, DexMonitor provides type, name and value of
the field. Also, if the branch or jump operations are occured,
DexMonitor puts ‘‘branch taken’’ string. Besides, we can
know new values stored in registers by move operations as
indicated in lines 21 and 25.

Listing 1. Example of bytecode extracted by DexMonitor

B. EXECUTABLE FILES
Listing 2 shows an example of executable files of DexMoni-
tor. The prefix number is an order of loaded files and the rest
of it is a full path of the file on Android device; to save the
files in the designated directory, a forward slash was changed
to an underline.

Listing 2. Example of executable files extracted by DexMonitor

APPENDIX B
SCREENSHOTS OF CASE STUDIES
Figure 11, 12, and 13 show the evaluation results of
each application mentioned in Section IV. It illustrates the

71238 VOLUME 6, 2018

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

FIGURE 11. Screenshots of analyzed Qihoo 360 App.

FIGURE 12. Screenshots of analyzed H Banking App.

FIGURE 13. Screenshots of analyzed W Banking App.

snapshots of the original application, the tamper detec-
tion error message, and repacked application by using
DexMonitor, respectively.

REFERENCES
[1] Allatori Java Obfuscator. Accessed: Sep. 6, 2018. [Online]. Available:

http://www.allatori.com/
[2] Android Bench. Accessed: Sep. 6, 2018. [Online]. Available:

https://play.google.com/store/apps/details?id=net.warp7.nativevsdalvik
[3] Android Open Source Project. Accessed: Sep. 6, 2018. [Online]. Available:

https://source.android.com/
[4] P. Schulz and F. Matenaar, ‘‘Android reverse engineering and defenses,’’

Bluebox Labs, Tech. Rep., 2013.
[5] Art and Dalvik. Accessed: Sep. 6, 2018. [Online]. Available:

https://source.android.com/devices/tech/dalvik/index.html
[6] Dalvik Instruction. Accessed: Sep. 6, 2018. [Online]. Available:

https://source.android.com/devices/tech/dalvik/instruction-formats.html
[7] Dalvik JIT. Accessed: Sep. 6, 2018. [Online]. Available: http://

android-developers.blogspot.kr/2010/05/dalvi k-jit.html
[8] Dalvik Optimization and Verification With Dexopt. Accessed:

Sep. 6, 2018. [Online]. Available: http://newandroidbook.com/
code/android-5.1.1_r24/dalvik/docs/dexopt.html

[9] Dex2jar. Dex2jar Tool. Accessed: Sep. 6, 2018. [Online]. Available:
https://github.com/pxb1988/dex2jar

[10] DexGuard. Accessed: Sep. 6, 2018. [Online]. Available:
https://www.saikoa.com/dexguard

[11] Dexprotector by Licel. Accessed: Sep. 6, 2018. [Online]. Available:
http://dexprotector.com/

[12] DroidScope. Accessed: Sep. 6, 2018. [Online]. Available:
https://code.google.com/p/decaf-platform/wiki/DroidScope

[13] Fake Encryption Sample. Accessed: Sep. 6, 2018.
[Online]. Available: https://github.com/
blueboxsecurity/DalvikBytecodeTampering

[14] Java Decompiler. JD Project: Java Decompiler. Accessed: Sep. 6, 2018.
[Online]. Available: http://jd.benow.ca

[15] SciMark. SciMark 2.0: A Java Benchmark for Scientific and
Numerical Computing. Accessed: Sep. 6, 2018. [Online]. Available:
http://math.nist.gov/scimark2/index.html

[16] Smali. Smali: An Assembler for the Dex Format. Accessed: Sep. 6, 2018.
[Online]. Available: https://code.google.com/p/smali/

[17] Stringer JAVA Obfuscator. Accessed:
Sep. 6, 2018. [Online]. Available: https://jfxstore.
com/stringer/

[18] What are you Doing?—DSEncrypt Malware. Accessed:
Sep. 6, 2018. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2014/06/what-are-you-doing-dsencrypt-malware.html

[19] AppBrain. Number of Available Android Applications. Accessed:
Sep. 6, 2018. [Online]. Available: http://www.appbrain.com/stats/number-
of-android-apps

[20] A. Apvrille, ‘‘Playing hide and seek with Dalvik executables,’’ Hacktivity,
Budapest, Hungary, 2013.

[21] D. Aucsmith, ‘‘Tamper resistant software: An implementation,’’ in Infor-
mation Hiding. Cambridge, U.K.: Springer, 1996, pp. 317–333.

[22] B. Bichsel, V. Raychev, P. Tsankov, and M. Vechev, ‘‘Statistical deobfus-
cation of Android applications,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2016, pp. 343–355.

[23] B. Cheng and B. Buzbee, ‘‘A JIT compiler for Android’s Dalvik VM,’’ in
Proc. Google I/O Developer Conf., 2010, pp. 1–32.

[24] H. Cho, J. Lim, H. Kim, and J. H. Yi, ‘‘Anti-debugging scheme for
protecting mobile apps on Android platform,’’ J. Supercomput., vol. 72,
no. 1, pp. 232–246, 2016.

[25] L. Dolberg, Q. Jérôme, J. François, R. State, and T. Engel,
‘‘RAMSES: Revealing Android malware through string extraction
and selection,’’ in Proc. Int. Conf. Secur. Privacy Commun. Netw.
Singapore: Springer, 2014, pp. 498–506.

[26] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, ‘‘A survey on automated
dynamic malware-analysis techniques and tools,’’ ACM Comput. Surv.,
vol. 44, no. 2, p. 6, 2012.

[27] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, ‘‘A study of Android
application security,’’ in Proc. USENIX Secur. Symp., vol. 2, 2011, p. 2.

[28] T. W. Hou, H. Y. Chen, and M. H. Tsai, ‘‘Three control flow obfuscation
methods for Java software,’’ IEE Proc. Softw., vol. 153, no. 2, pp. 80–86,
Apr. 2006.

[29] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu, ‘‘Morpheus: Automatically gener-
ating heuristics to detect Android emulators,’’ in Proc. 30th Annu. Comput.
Secur. Appl. Conf. (ACSAC), 2014, pp. 216–225.

[30] J.-H. Jung, J. Y. Kim, H.-C. Lee, and J. H. Yi, ‘‘Repackaging attack on
Android banking applications and its countermeasures,’’ Wireless Pers.
Commun., vol. 73, no. 4, pp. 1421–1437, 2013.

[31] D. Kim, J. Kwak, and J. Ryou, ‘‘Dwroiddump: Executable code extraction
from Android applications for malware analysis,’’ Int. J. Distrib. Sensor
Netw., vol. 11, no. 9, p. 379682, 2015.

[32] J. Li, D. Gu, and Y. Luo, ‘‘Android malware forensics: Reconstruction
of malicious events,’’ in Proc. 32nd Int. Conf. Distrib. Comput. Syst.
Workshops (ICDCSW), Jun. 2012, pp. 552–558.

[33] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, ‘‘Armaged-
don: Cache attacks onmobile devices,’’ inProc. 25th USENIX Secur. Symp.
Berkeley, CA, USA: USENIX, 2016, pp. 549–564.

[34] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, ‘‘Rage against the virtual machine: Hindering dynamic anal-
ysis of Android malware,’’ in Proc. 7th Eur. Workshop Syst. Secur., 2014,
p. 5.

[35] Y. Piao, J.-H. Jung, and J. H. Yi, ‘‘Server-based code obfuscation
scheme for APK tamper detection,’’ Secur. Commun. Netw., vol. 9, no. 6,
pp. 457–467, 2014.

[36] Z. Tang, X. Chen, D. Fang, and F. Chen, ‘‘Research on java software
protection with the obfuscation in identifier renaming,’’ in Proc. 4th Int.
Conf. Innov. Comput., Inf. Control (ICICIC), Dec. 2009, pp. 1067–1071.

[37] V. Van Der Veen, H. Bos, and C. Rossow, ‘‘Dynamic analysis of Android
malware,’’ M.S. thesis, Dept. Comput. Sci., Internet Web Technol.,
VU University Amsterdam, Amsterdam, The Netherlands, 2013.

VOLUME 6, 2018 71239

H. Cho et al.: DexMonitor: Dynamically Analyzing and Monitoring Obfuscated Android Applications

[38] T. Vidas and N. Christin, ‘‘Evading Android runtime analysis via
sandbox detection,’’ in Proc. 9th ACM Symp. Inf., Comput. Commun.
Secur. (ASIACCS), 2014, pp. 447–458.

[39] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, ‘‘Steal this movie:
Automatically bypassing DRM protection in streaming media services,’’
in Proc. 22nd USENIX Secur. Symp., 2013, pp. 687–702.

[40] C. Warren. (Jul. 2013). Google Play Hits 1 Million Apps. [Online].
Available: http://mashable.com/2013/07/24/google-play-1-million/, .

[41] M. Y. Wong and D. Lie, ‘‘Tackling runtime-based obfuscation in Android
with TIRO,’’ in Proc. 27th USENIX Secur. Symp., 2018, pp. 1247–1262.

[42] L.-K. Yan and H. Yin, ‘‘DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis,’’ in Proc.
USENIX Secur. Symp., 2012, pp. 569–584.

[43] Z. Zhao, G.-J. Ahn, and H. Hu, ‘‘Automatic extraction of secrets from
malware,’’ in Proc. 18th Work. Conf. Reverse Eng. (WCRE), Oct. 2011,
pp. 159–168.

[44] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang, ‘‘Divilar: Diversifying inter-
mediate language for anti-repackaging on Android platform,’’ in Proc. 4th
ACM Conf. Data Appl. Secur. Privacy (CODASPY), 2014, pp. 199–210.

HAEHYUN CHO received the B.S. and M.S.
degrees in computer science from Soongsil Uni-
versity, Seoul, South Korea, in 2013 and 2015,
respectively. He is currently pursuing the Ph.D.
degree in computer science with the School of
Computing, Informatics and Decision Systems
Engineering, Arizona State University, with a
focus on information assurance. His research inter-
est lies in the field of systems security that is to
address and discover security concerns stemmed
from insecure designs.

JEONG HYUN YI received the B.S. and M.S.
degrees in computer science from Soongsil Uni-
versity, Seoul, South Korea, in 1993 and 1995,
respectively, and the Ph.D. degree in informa-
tion and computer science from the University of
Californian at Irvine in 2005. He was a Member of
Research Staff with the Electronics and Telecom-
munications Research Institute, South Korea, from
1995 to 2001. From 2000 to 2001, he was a Guest
Researcher with theNational Institute of Standards

and Technology, Gaithersburg, MD, USA. He was a Principal Researcher
with the Samsung Advanced Institute of Technology, South Korea, from
2005 to 2008. He is currently an Associate Professor with the School of
Software and the Director of the Cyber Security Research Center, Soongsil
University, Seoul. His research interests include mobile security and privacy,
IoT security, and applied cryptography.

GAIL-JOON AHN is currently a Professor in com-
puter science and engineering and the Director of
the Center for Cybersecurity andDigital Forensics,
Arizona State University (ASU).

Prior to joining ASU in 2008, he was an Asso-
ciate Professor with the College of Computing
and Informatics and the Founding Director of the
Center for Digital Identity and Cyber Defense
Research, The University of North Carolina,
Charlotte. He has authored more than 150 refereed

research papers. His research was supported byNSF, NSA, DoD, ONR, DoE,
DoJ, the Bank of America, CISCO, GoDaddy, Hewlett Packard, Google,
Microsoft, and the Robert Wood Johnson Foundation. His research interests
include security analytics and big data driven security intelligence, vulner-
ability and risk management, access control and security architecture for
distributed systems, identity and privacy management, cyber crime analysis,
security-enhanced computing platforms, and formal models for computer
security device. He is currently the Information Director of the ACM Special
Interest Group on security, audit, and control. He was a recipient of the
U.S. Department of Energy Early Career Principal Investigator Award,
the Educator of the Year Award from the Federal Information Systems
Security Educators’ Association, and the Best Researcher Award from
CIDSE. He is the Steering Committee Chair of the ACM Symposium on
Access Control Models and Technologies. He is also the General Chair of
the ACM Conference on Computer and Communications Security 2014.
He serves as the Associate Editor-in-Chief of the IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING and an Associate Editor of the ACM
Transactions on Information and Systems Security. He is on the Editorial
Board of Computers and Security.

71240 VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND
	DALVIK VIRTUAL MACHINE
	DALVIK BYTECODE OBFUSCATION
	OTHER PROTECTION METHODS

	DexMonitor
	DESIGN GOALS
	IN-THE-BOX DESIGN
	SELECTIVE MONITORING

	BUILDING BLOCKS OF DexMonitor
	MONITORING TRIGGER
	OP-INTERPRETER
	INSTRUCTION MONITOR
	EXECUTABLE FILE EXTRACTOR

	IMPLEMENTATION AND EVALUATION
	ANTIVIRUS APPLICATION: QIHOO 360 SECURITY V.3.4.2
	MOBILE BANKING APPLICATIONS
	CASE I: H BANKING APPLICATION V.4.41
	CASE II: W BANKING APPLICATION V.1.1.8

	REAL-WORLD MALWARE
	PERFORMANCE EVALUATION

	DISCUSSION
	RELATED WORK
	CONCLUSION
	EXECUTED BYTECODE
	EXECUTABLE FILES

	REFERENCES
	Biographies
	HAEHYUN CHO
	JEONG HYUN YI
	GAIL-JOON AHN

