
Discovery and Resolution of Anomalies
in Web Access Control Policies

Hongxin Hu, Member, IEEE, Gail-Joon Ahn, Senior Member, IEEE, and Ketan Kulkarni

Abstract—Emerging computing technologies such as web services, service-oriented architecture, and cloud computing has enabled

us to perform business services more efficiently and effectively. However, we still suffer from unintended security leakages by

unauthorized actions in business services while providing more convenient services to Internet users through such a cutting-edge

technological growth. Furthermore, designing and managing web access control policies are often error-prone due to the lack of

effective analysis mechanisms and tools. In this paper, we represent an innovative policy anomaly analysis approach for web access

control policies, focusing on extensible access control markup language policy. We introduce a policy-based segmentation technique

to accurately identify policy anomalies and derive effective anomaly resolutions, along with an intuitive visualization representation of

analysis results. We also discuss a proof-of-concept implementation of our method called XAnalyzer and demonstrate how our

approach can efficiently discover and resolve policy anomalies.

Index Terms—Access control policies, XACML, conflict, redundancy, discovery and resolution

Ç

1 INTRODUCTION

WITH the tremendous growth of web applications and
web services deployed on the Internet, the use of a

policy-based approach has recently received considerable
attention to accommodate the security requirements cover-
ing large, open, distributed, and heterogeneous computing
environments. eXtensible Access Control Markup Language
(XACML) [25], which is a general-purpose access control
policy language standardized by the Organization for the
Advancement of Structured Information Standards, has
been broadly adopted to specify access control policies for
various applications, especially web services [28]. In an
XACML policy, multiple rules may overlap, which means
one access request may match several rules. Moreover,
multiple rules within one policy may conflict, implying that
those rules not only overlap each other, but also yield
different decisions. Conflicts in an XACML policy may lead
to both safety problem (e.g., allowing unauthorized access)
and availability problem (e.g., denying legitimate access).

An intuitive means for resolving policy conflicts by a

policy designer is to remove all conflicts by modifying the

policies. However, resolving conflicts through changing

the policies is notably difficult, even impossible, in

practice from many aspects. First, the number of conflicts

in an XACML policy is potentially large, since an XACML

policy may consist of hundreds or thousands of rules.

Second, conflicts in XACML policies are probably very
complicated, because one rule may conflict with multiple
other rules, and one conflict may be associated with
several rules. Besides, an XACML policy for a distributed
application may be aggregated from multiple parties.
Also, an XACML policy may be maintained by more than
one administrator. Without a priori knowledge on the
original intentions of policy specification, changing a
policy may affect the policy’s semantics and may not
resolve conflicts correctly. Furthermore, in some cases, a
policy designer may intentionally introduce certain over-
laps in XACML policy components by implicitly reflecting
that only the first rule is important. In this case, conflicts
are not an error, but intended, which would not be
necessary to be changed.

Since the conflicts in XACML policies always exist and
are hard to be eliminated, XACML defines four different
combining algorithms to automatically resolve conflicts
[25]: Deny-Overrides, Permit-Overrides, First-Applicable, and
Only-One-Applicable. Unfortunately, XACML currently lacks
a systematic mechanism for precisely detecting conflicts.
Identifying conflicts in XACML policies is critical for policy
designers since the correctness of selecting a combining
algorithm for an XACML policy or policy set component
heavily relies on the information from conflict diagnosis.
Without precise conflict information, the effectiveness of
combining algorithms for resolving policy conflicts cannot
be guaranteed.

Another critical problem for XACML policy analysis is
redundancy discovery and removal. A rule in an XACML
policy is redundant if every access request that matches the
rule also matches other rules with the same effect. As
the response time of an access request largely depends on
the number of rules to be parsed within a policy,
redundancies in a policy may adversely affect the perfor-
mance of policy evaluation. Therefore, policy redundancy is
treated as policy anomaly as well. Redundancy elimination

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013 341

. H. Hu is with the Department of Computer and Information Sciences,
Delaware State University, 1200 N. DuPont Highway, Dover, DE 19901.
E-mail: hhu@desu.edu.

. G.-J. Ahn is with the Security Engineering for Future Computing
Laboratory, and the Ira A. Fulton School of Engineering, Arizona State
University, PO Box 878809, Tempe, AZ 85287. E-mail: gahn@asu.edu.

. K. Kulkarni is with NVIDIA, Sunnyvale, CA 94086.
E-mail: ketankulkarni29@gmail.com.

Manuscript received 27 Mar. 2012; revised 9 Oct. 2012; accepted 23 Jan. 2013;
published online 14 Mar. 2013.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2012-03-0062.
Digital Object Identifier no. 10.1109/TDSC.2013.18.

1545-5971/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

can be regarded as one of effective solutions for optimizing
XACML policies and improving the performance of
XACML evaluation.

Policy anomaly detection has recently received a great
deal of attention [3], [13], [23], [29], especially, in firewall
policy analysis. Corresponding policy analysis tools, such
as Firewall Policy Advisor [3], FIREMAN [29], and
FAME [13], with the goal of discovering firewall policy
anomalies have been developed. However, we cannot
directly adopt those approaches for analyzing XACML
policy anomalies due to several reasons. First, most
previous approaches are mainly capable of detecting
pairwise policy anomalies. However, it is necessary for a
complete anomaly detection to consider all policy compo-
nents as a whole piece. In other words, previous policy
anomaly analysis approaches are still needed to be
improved [4]. Second, the structure of firewall policies is
flat, while XACML has a hierarchical structure supporting
recursive policy specification. Third, a firewall policy only
supports one conflict resolution strategy (first-match) to
resolve conflicts but XACML has four rule/policy combin-
ing algorithms. Additionally, a firewall rule is typically
specified with fixed fields, while an XACML rule can be
multivalued. Therefore, a new policy analysis mechanism is
desirable to fulfill the requirements from anomaly analysis
aspects in XACML policies.

In this paper, we introduce a policy-based segmentation
technique, which adopts a binary decision diagram (BDD)-
based data structure to perform set operations, for policy
anomaly discovery and resolution. Based on this technique,
an authorization space defined by an XACML policy or
policy set component can be divided into a set of disjoint
segments. Each segment associated with a unique set of
XACML components indicates an overlapping relation
(either conflicting or redundant) among those components.
Accurate anomaly information is crucial to the success of
anomaly resolution. For example, conflict diagnosis in-
formation provided by a policy analysis tool can be utilized
to guide the policy designers in selecting appropriate
combining algorithms. Moreover, we present a grid-based
representation technique to show policy anomaly diagnosis
information in an intuitive manner, facilitating more
efficient policy anomaly management. Besides, we observe
that current XACML conflict resolution mechanisms are
too restrictive by applying only one combining algorithm
to resolve all identified conflicts within an XACML policy
or policy set component. Also, many other desirable
conflict resolution strategies exist [14], [16], [17], but cannot
be directly supported by XACML. Thus, we additionally
provide a flexible and extensible policy conflict resolution
method in this paper. In addition, based on our policy-
based segmentation technique, we provide an effective
redundancy discovery mechanism, where both rule re-
dundancies within one policy and redundancies across
multiple policies or policy sets can be detected and
eliminated. Furthermore, we implement a policy analysis
tool XAnalyzer based on our approach along with
extensive experiments.

The rest of this paper is organized as follows: Section 2
briefly discusses anomalies in XACML policies. We describe

the underlying data structure for XACML representation
based on BDDs in Section 3. Section 4 presents our conflict
detection and resolution approaches. In Section 5, we
address our redundancy discovery and removal ap-
proaches. In Section 6, we discuss the implementation of
our tool XAnalyzer and the evaluation of our approach.
Section 7 overviews the related work, and we conclude this
paper in Section 8.

2 BACKGROUND

2.1 Overview of XACML

XACML has become the de facto standard for describing
access control policies and offers a large set of built-in
functions, data types, combining algorithms, and standard
profiles for defining application-specific features. At the
root of all XACML policies is a policy or a policy set. A policy
set is composed of a sequence of policies or other policy sets
along with a policy combining algorithm and a target. A policy
represents a single access control policy expressed through
a target, a set of rules and a rule combining algorithm. The
target defines a set of subjects, resources, and actions the
policy or policy set applies to. A rule set is a sequence of
rules. Each rule consists of a target, a condition, and an effect.
The target of a rule determines whether an access request is
applicable to the rule and it has a similar structure as the
target of a policy or a policy set.

An XACML policy often has conflicting rules or policies,
which are resolved by four different combining algorithms:
Deny-Overrides, Permit-Overrides, First-Applicable, and Only-
One-Applicable [25]. Fig. 1 shows an example XACML
policy. The root policy set PS1 contains two policies, P1

and P2, which are combined using First-Applicable combin-
ing algorithm. The policy P1 has three rules, r1, r2, and r3,
and its rule combining algorithm is Deny-Overrides. The
policy P2 includes two rules r4 and r5 with Deny-Overrides
combining algorithm. In this example, there are four
subjects: Manager, Designer, Developer, and Tester; two
resources: Reports and Codes; and two actions: Read and
Change. Note that both r2 and r3 define conditions over the
Time attribute.

2.2 Anomalies in XACML Policies

An XACML policy may contain both policy components
and policy set components. Often, a rule anomaly occurs in
a policy component, which consists of a sequence of rules.
On the other hand, a policy set component consists of a set
of policies or other policy sets; thus, anomalies may also
arise among policies or policy sets. We address XACML
policy anomalies at both policy level and policy set level:

. Anomalies at policy level. A rule is conflicting with
other rules, if this rule overlaps with others but
defines a different effect. For example, the deny rule
r1 is in conflict with the permit rule r2 in Fig. 1
because rule r2 allows the access requests from a
designer to change codes in the time interval [8:00,
17:00], which are supposed to be denied by r1; and a
rule is redundant if there is other same or more
general rules available that have the same effect. For
instance, if we change the effect of r2 to Deny, r3

342 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013

becomes redundant because r2 will also deny a
designer to change reports or codes in the time
interval [12:00, 13:00].

. Anomalies at policy set level. Anomalies may also
occur across policies or policy sets in an XACML
policy. For example, considering two policy com-
ponents P1 and P2 of the policy set PS1 in Fig. 1,
P1 is conflicting with P2, because P1 permits the
access requests that a developer changes reports in
the time interval [8:00, 17:00], which are denied by
P2. On the other hand, P1 denies the requests
allowing a designer to change reports or codes in
the time interval [12:00, 13:00], which are permitted
by P2. Supposing the effect of r2 is changed to
Deny and the condition of r2 is removed, r4 is
turned to be redundant with respect to r2, even
though r2 and r4 are placed in different policies P1

and P2, respectively.

A policy anomaly may involve in multiple rules. For
example, in Fig. 1, access requests that a designer changes
codes in the time interval [12:00, 13:00] are permitted by r2,
but denied by both r1 and r3. Thus, this conflict associates
with three rules. For another example, suppose the effect of
r3 is changed to Permit and the subject of r3 is replaced by

Manager and Developer. If we only examine pairwise
redundancies, r3 is not a redundant rule. However, if we
check multiple rules simultaneously, we can identify r3 is
redundant considering r2 and r5 together. We observe that
precise anomaly diagnosis information is crucial for
achieving an effective anomaly resolution. In this paper,
we attempt to design a systematic approach and corre-
sponding tool not only for accurate anomaly detection but
also for effective anomaly resolution.

3 UNDERLYING DATA STRUCTURE

Our policy-based segmentation technique introduced in
subsequent sections requires a well-formed representation
of policies for performing a variety of set operations. BDD
[9] is a data structure that has been widely used for
formal verification and simplification of digital circuits. In
this work, we leverage BDD as the underlying data
structure to represent XACML policies and facilitate
effective policy analysis.

Given an XACML policy, it can be parsed to identify
subject, action, resource, and condition attributes. Once
these attributes are identified, all XACML rules can be
transformed into Boolean expressions [5]. Each Boolean
expression of a rule is composed of atomic Boolean
expressions combined by logical operators _ and ^. Atomic
Boolean expressions are treated as equality constraints or
range constraints on attributes (e.g., Subject ¼ “Designer”)
or on conditions (e.g., 8:00 � Time � 17:00).

Example 1. Consider the example XACML policy in Fig. 1
in terms of atomic Boolean expressions. The Boolean
expression for rule r1 is

Subjectð¼ ‘‘Designer’’ _ Subject ¼ ‘‘Tester’’Þ
^ ðResource ¼ ‘‘Codes’’Þ ^ ðAction ¼ ‘‘Change’’Þ:

The Boolean expression for rule r2 is

ðSubject ¼ ‘‘Designer’’ _ Subject ¼ ‘‘Developer’’Þ
^ ðResource ¼ ‘‘Reports’’ _Resource ¼ ‘‘Codes’’Þ
^ ðAction ¼ ‘‘Read’’ _Action ¼ ‘‘Change’’Þ
^ ð8:00 � Time � 17:00Þ:

Boolean expressions for XACML rules may consist of
atomic Boolean expressions with overlapping value
ranges. In such cases, those atomic Boolean expressions
are needed to be transformed into a sequence of new
atomic Boolean expressions with disjoint value ranges.
Agrawal et al. [1] have identified different categories of
such atomic Boolean expressions and addressed corre-
sponding solutions for those issues. We adopt similar
approach to construct our Boolean expressions for
XACML rules.

We encode each of the atomic Boolean expression as a
Boolean variable. For example, an atomic Boolean
expression Subject ¼ “Designer” is encoded into a
Boolean variable S1. A complete list of Boolean encoding
for the example XACML policy in Fig. 1 is shown in
Table 1. We then utilize the Boolean encoding to
construct Boolean expressions in terms of Boolean
variables for XACML rules.

HU ET AL.: DISCOVERY AND RESOLUTION OF ANOMALIES IN WEB ACCESS CONTROL POLICIES 343

Fig. 1. An example XACML policy.

Example 2. Consider the example XACML policy in Fig. 1

in terms of Boolean variables. The Boolean expression for

rule r1 is

ðS1 _ S2Þ ^ ðR2Þ ^ ðA2Þ:

The Boolean expression for rule r2 is

ðS1 _ S3Þ ^ ðR1 _R2Þ ^ ðA1 _A2Þ ^ ðC1 _ C2 _ C3Þ:

BDDs are acyclic directed graphs that represent
Boolean expressions compactly. Each nonterminal node
in a BDD represents a Boolean variable and has two
edges with binary labels, 0 and 1 for nonexistent and
existent, respectively. Terminal nodes represent Boolean
value T (True) or F (False). Figs. 2a and 2b give BDD
representations of two rules r1 and r2, respectively.

Once the BDDs are constructed for XACML rules,
performing set operations, such as unions ([), intersec-
tions (\), and set differences (n), required by our policy-
based segmentation algorithms (see Algorithms 1 and 2)
is efficient as well as straightforward. Fig. 2c shows an
integrated BDD, which is the difference of r2’ BDD from
r1’ BDD (r2 n r1). Note that the resulting BDDs from the
set operations may have less number of nodes due to the
canonical representation of BDD.

4 CONFLICT DETECTION AND RESOLUTION

We first introduce a concept of authorization space, which

adopts the aforementioned BDD-based policy representa-

tion to perform policy anomaly analysis. This concept is

defined as follows:

Definition 1 (Authorization space). LetRx,Px, andPSx be the

set of rules, policies, and policy sets, respectively, of an XACML

policy x. An authorization space for an XACML policy

component c 2 Rx [Px [PSx represents a collection of all

access requests1 Qc to which a policy component c is applicable.

4.1 Conflict Detection Approach

Our conflict detection mechanism examines conflicts at both

policy level and policy set level for XACML policies. To

precisely identify policy conflicts and facilitate an effective

conflict resolution, we present a policy-based segmentation

technique to partition the entire authorization space of a
policy into disjoint authorization space segments. Then,
conflicting authorization space segments (called conflicting
segment in the rest of this paper), which contain policy
components with different effects, are identified. Each
conflicting segment indicates a policy conflict.

4.1.1 Conflict Detection at Policy Level

A policy component in an XACML policy includes a set of
rules. Each rule defines an authorization space with the
effect of either permit or deny. We call an authorization
space with the effect of permit permitted space and an
authorization space with the effect of deny denied space.

Algorithm 1 shows the pseudocode of generating
conflicting segments for a policy component P . An entire
authorization space derived from a policy component is
first partitioned into a set of disjoint segments. As shown in
lines 17-33 in Algorithm 1, a function called Partition()

accomplishes this procedure. This function works by
adding an authorization space s derived from a rule r to
an authorization space set S. A pair of authorization spaces
must satisfy one of the following relations: subset (line 19),
superset (line 24), partial match (line 27), or disjoint (line 32).
Therefore, one can utilize set operations to separate the
overlapped spaces into disjoint spaces.

Conflicting segments are identified as shown in lines 6-10
in Algorithm 1. A set of conflicting segments CS:
fcs1; cs2; . . . ; csng from conflicting rules has the following
three properties:

1. All conflicting segments are pairwise disjoint:
csi \ csj ¼ ;; 1 � i 6¼ j � n;

2. any two different requests q and q0 within a single
conflicting segment (csi) are matched by exact same
set of rules: GetRuleðqÞ ¼ GetRuleðq0Þ;2 8q 2 csi; q0 2
csi; q 6¼ q0; and

3. the effects of matched rules in any conflicting
segments contain both “Permit” and “Deny.”

To facilitate the correct interpretation of analysis results,
a concise and intuitive representation method is necessary.
For the purposes of brevity and understandability, we first
employ a two-dimensional geometric representation for
each authorization space segment. Note that a rule in an
XACML policy typically has multiple fields; thus, a
complete representation of authorization space should be
multidimensional. Also, we utilize colored rectangles to

344 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013

TABLE 1
Atomic Boolean Expressions and

Corresponding Boolean Variables for P1

Fig. 2. Representing and operating on rules of XACML policy with BDD.

1. We only consider single-valued requests in this definition. Multi-
valued requests are discussed in Section 5. 2. GetRuleðÞ is a function that returns all rules matching a request.

denote two kinds of authorization spaces: permitted space

(white color) and denied space (gray color), respectively.
Fig. 3a gives a representation of the segments of authoriza-
tion space derived from the policy P1 in the XACML
example policy shown in Fig. 1. We can notice that five
unique disjoint segments are generated. In particular, three
conflicting segments cs1, cs2, and cs3 are identified,
representing three policy conflicts.

When a set of XACML rules interacts, one overlapping
relation may be associated with several rules. Meanwhile,
one rule may overlap with multiple other rules and can be
involved in a couple of overlapping relations (overlapping
segments). Different kinds of segments and associated
rules can be viewed like in Fig. 3a. However, it is still
difficult for a policy designer or administrator to figure out
how many segments one rule is involved in. To address the
need of a more precise conflict representation, we

additionally introduce a grid representation that is a
matrix-based visualization of policy conflicts, in which space
segments are displayed along the horizontal axis of the
matrix, rules are shown along the vertical axis, and the
intersection of a segment and a rule is a grid that displays a
rule’s subspace covered by the segment.

Fig. 3b shows a grid representation of conflicts in the
policy P1 in our example policy. We can easily determine
which rules are covered by a segment, and which segments
are associated with a rule. For example, as shown in Fig. 3b,
we can notice that a conflicting segment cs2, which points
out a conflict, is related to a rule set consisting of three rules
r1, r2, and r3 (highlighted with a horizontal red rectangle),
and a rule r2 is involved in three conflicting segments cs1,
cs2, and cs3 (highlighted with a vertical red rectangle). Our
grid representation provides a better understanding of
policy conflicts to policy designers and administrators with
an overall view of related segments and rules.

4.1.2 Conflict Detection at Policy Set Level

There are two major challenges that need to be taken into
consideration when we design an approach for XACML
analysis at policy set level:

1. XACML supports four rule/policy combining algo-
rithms: First-Applicable, Only-One-Applicable, Deny-
Overrides, and Permit-Overrides.

2. An XACML policy is specified recursively and,
therefore, has a hierarchical structure. In XACML,
a policy set contains a sequence of policies or policy
sets, which may further contain other policies or
policy sets.

Each authorization space segment also has an effect,
which is determined by the XACML components covered
by this segment. For nonconflicting segments, the effect of a
segment equals to the effect of components covered by
this segment. Regarding conflicting segments, the effect of a
segment depends on the following four cases of combining
algorithm (CA), which is used by the owner (a policy or a
policy set) of the segment:

1. CA ¼ First-Applicable. In this case, the effect of a
conflicting segment equals to the effect of the first
component covered by the conflicting segment.

2. CA ¼ Permit-Overrides. The effect of a conflicting
segment is always assigned with “Permit,” since
there is at least one component with “Permit” effect
within this conflicting segment.

3. CA ¼ Deny-Overrides. The effect of a conflicting
segment always equals to “Deny.”

4. CA ¼ Only-One-Applicable. The effect of a conflicting
segment equals to the effect of only applicable
component.

To support the recursive specifications of XACML
policies, we parse and model an XACML policy as a tree
structure [20], [21]. Algorithm 2 shows the pseudocode of
identifying disjoint conflicting authorization spaces for a
policy set PS. To partition authorization spaces of all
nodes contained in a policy set tree, this algorithm
recursively calls the partition functions, Partition_P()
and Partition_PS(), to deal with the policy nodes
(lines 16-17) and the policy set nodes (lines 19-20),

HU ET AL.: DISCOVERY AND RESOLUTION OF ANOMALIES IN WEB ACCESS CONTROL POLICIES 345

Fig. 3. Authorization space representation for policy P1 in the example
XACML policy.

respectively. Once all children nodes of a policy set are
partitioned, we can then represent the authorization space
of each child node (E) with two subspaces permitted
subspace (EP) and denied subspace (ED) by aggregating all
“Permit” segments and “Deny” segments, respectively,
as follows:

EP ¼
S
si2SE si if EffectðsiÞ ¼ Permit

ED ¼
S
si2SE si if EffectðsiÞ ¼ Deny;

�
ð1Þ

where SE denotes the set of authorization space segments of

the child node E.

For example, since the combining algorithm of the policy
P1 in our example XACML policy is Deny-Overrides, the
effects of three conflicting segments shown in Fig. 3 are
“Deny.” Fig. 4 shows the result of aggregating authoriza-
tion spaces of the policy P1, where two subspaces PP

1 and
PD

1 are constructed.
To generate segments for the policy set PS, we can then

leverage two subspaces (EP and ED) of each child node (E)

to partition existing authorization space set belonging to PS
(lines 28-29). Fig. 5a represents an example of the segments
of authorization space derived from policy set PS1 in our
example policy (Fig. 1). We can observe that seven unique
disjoint segments are generated, and two of them cs1 and
cs2 are conflicting segments. We additionally give a grid
representation of conflicts in the policy set PS1 shown in
Fig. 5b. Then, we can easily identify that the conflicting
segment cs1 is related to two subspaces: P1’s permitted
subspace PP

1 and P2’s denied subspace PD
2 , and the policy P1

is associated with two conflicts, where P1’s permitted
subspace PP

1 is involved in the conflict represented by cs1

and P1’s denied subspace PD
1 is related to the conflict

represented by cs2.

4.2 Fine-Grained Conflict Resolution

Once conflicts within a policy component or policy set
component are identified, a policy designer can choose
appropriate conflict resolution strategies to resolve those
identified conflicts. However, current XACML conflict
resolution mechanisms have limitations in resolving con-
flicts effectively. First, existing conflict resolution mechan-
isms in XACML are too restrictive and only allow a policy
designer to select one combining algorithm to resolve all
identified conflicts within a policy or policy set component.
A policy designer may want to adopt different combining
algorithms to resolve different conflicts. Second, XACML
offers four conflict resolution strategies. However, many
conflict resolution strategies exist [14], [17] but cannot be
specified in XACML. Thus, it is necessary to seek a
comprehensive conflict resolution mechanism for more
effective conflict resolution. Toward this end, we introduce
a flexible and extensible conflict resolution framework to
achieve a fine-grained conflict resolution as shown in Fig. 6.

4.2.1 Effect Constraint Generation from a Conflict

Resolution Strategy

Our conflict resolution framework introduces an effect
constraint that is assigned to each conflicting segment. An
effect constraint for a conflicting segment defines a desired
response (either permit or deny) that an XACML policy
should take when any access request matches the conflict-
ing segment. The effect constraint is derived from the
conflict resolution strategy applied to the conflicting
segment, using a similar process of determining the effect
of a conflicting segment described in Section 4.1.2. A policy
designer chooses an appropriate conflict resolution strategy
for each identified conflict by examining the features of
conflicting segment and associated conflicting components.
In our conflict resolution framework, a policy designer is

346 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013

Fig. 4. Aggregation of authorization spaces for policy P1 in the example
XACML policy.

Fig. 5. Authorization space representation for policy set PS1 in the
example XACML policy.

able to adopt different strategies to resolve conflicts
indicated by different conflicting segments. In addition to
four standard XACML conflict resolution strategies, user-
defined strategies [17], such as Recency-Overrides, Specificity-
Overrides, and High-Majority-Overrides, can be implied in
our framework as well. For example, applying a conflict
resolution strategy, High-Majority-Overrides, to the second
conflicting segment cs2 of policy P1 depicted in Fig. 3, an
effect constraint Effect ¼ “Deny” will be generated for cs2.

4.2.2 Conflict Resolution Based on Effect Constraints

A key feature of adopting effect constraints in our framework
is that other conflict resolution strategies assigned to
resolve different conflicts by a policy designer can be
automatically mapped to standard XACML combining
algorithms, without changing the way that current XACML
implementations perform. As illustrated in Fig. 6, an
XACML combining algorithm can be derived for a target
component by examining all effect constraints of the
conflicting segments. If all effect constraints are “Permit,”
Permit-Overrides is selected for the target component to
resolve all conflicts. In case all effect constraints are
“Deny,” Deny-Overrides is assigned to the target compo-
nent. Then, if the target component is a policy set and all
effect constraints can be satisfied by applying Only-One-
Applicable combining algorithm, Only-One-Applicable is
selected as the combining algorithm of the target compo-
nent. Otherwise, First-Applicable is selected as the combin-
ing algorithm of the target component. To resolve all
conflicts within the target component by applying First-
Applicable, the process of reordering conflicting components
is compulsory to enable that the first-applicable component
in each conflicting segment has the same effect with
corresponding effect constraint.

Practically, one XACML component may get involved in
multiple conflicts. In this case, removing such a component
to satisfy one effect constraint may violate other effect
constraints. Therefore, we cannot resolve a conflict indivi-
dually by reordering a set of conflicting components
associated with one conflict. On the other hand, it is also
inefficient to deal with all conflicts together by reordering
all conflicting components simultaneously. Thus, we next

introduce a correlation mechanism to identify dependent
relationships among conflicting segments. The major ben-
efit of identifying dependent relationships for a conflict
resolution is to lessen the searching space of reordering
conflicting components.

Fig. 7 shows an example for conflicting segment
correlation, considering an XACML policy component P
with eight rules. Five conflicting segments are identified in
this example. Several rules in this XACML policy compo-
nent are involved in multiple conflicts. For example, r2

contributes to two policy conflicts corresponding to two
conflicting segments cs1 and cs2, respectively. Also, r8 is
associated with two conflicting segments cs2 and cs3.
Suppose we want to satisfy the effect constraint of cs2 by
reordering associated conflicting rules, r2, r5, and r8. The
position change of r2 and r8 would affect conflicting
segments, cs1 and cs2, respectively. Thus, a dependent
relationship can be derived among cs1, cs2, and cs3 with
respect to the conflict resolution. Similarly, we can identify
the dependent relation between cs4 and cs5. We organize
those conflicting segments with a dependent relationship as
a group called conflict correlation group. The pseudocode of
an algorithm for identify conflict correlation groups is given
in Algorithm 3.

5 REDUNDANCY DISCOVERY AND REMOVAL

Our redundancy discovery and removal mechanism also
leverage the policy-based segmentation technique to ex-
plore redundancies at both policy level and policy set level.

5.1 Redundancy Elimination at Policy Level

We employ following steps to identify and eliminate
redundant rules at policy level.

HU ET AL.: DISCOVERY AND RESOLUTION OF ANOMALIES IN WEB ACCESS CONTROL POLICIES 347

Fig. 7. Example of conflicting segment correlation.

Fig. 6. Fine-grained conflict resolution framework.

5.1.1 Authorization Space Segmentation

We first perform the policy segmentation function

Partition_P() defined in Algorithm 1 to divide the

entire authorization space of a policy into disjoint

segments. We classify the policy segments in following

categories: nonoverlapping segment and overlapping seg-

ment, which is further divided into conflicting overlapping

segment and nonconflicting overlapping segment. Each

nonoverlapping segment associates with one unique rule,

and each overlapping segment is related to a set of rules,

which may conflict with each other (conflicting overlapping

segment) or have the same effect (nonconflicting overlapping

segment). Fig. 8a illustrates a grid representation of

authorization space segmentation for a policy with eight

rules. In this example, one policy segment s4 is a

nonoverlapping segment. Other policy segments are over-

lapping segments, including three conflicting overlapping

segments s1, s2, and s6, and two nonconflicting overlapping

segments s3 and s5.

5.1.2 Irremovable Rule Identification Considering

Multivalued Requests

An XACML request may be multivalued. For example, an

XACML request can be “a person, who is both a Developer

and a Designer, wants to change reports,” where the subject

has two values, Developer and Designer. A multivalued

request may match several rules, which do not overlap with

each other in terms of single-valued requests. For instance,

the above multivalued request matches both r4 and r5 in the

example policy shown in Fig. 1, although r4 and r5 have no

overlapping relation considering single-valued requests.

We observe that an XACML rule may be removable with

respect to single-valued requests but irremovable taking into

account multivalued requests. Therefore, we introduce a

process to examine whether an XACML rule is irremovable

considering multivalued requests based on the three cases

of rule combining algorithm (CA):

1. CA ¼ First-Applicable. In this case, since a multi-
valued request may match the examined rule and
any subsequent rule(s) in the policy, if there is a
subsequent rule with a different effect, the examined
rule is considered irremovable.

2. CA ¼ Permit-Overrides. A multivalued request may
match the examined rule and any other rule(s) in the
policy. If the examined rule is a “permit” rule and
there is any other rule being a “deny” rule, the
examined rule is irremovable.

3. CA ¼ Deny-Overrides. If the examined rule is a
“deny” rule and there is any other rule being a
“permit” rule, the examined rule is irremovable.

Algorithm 4 shows the pseudocode for the definition of a

function IrremovableCheck(), which will subsequently

be used in both property assignment and redundancy

removal processes to check if a rule is irremovable in a policy

considering multivalued requests.

5.1.3 Property Assignment for Rule Subspaces

In this step, every rule subspace covered by a policy segment
is assigned with a property. Four property values, removable
(R), strong irremovable (SI), weak irremovable (WI) and
correlated (C), are defined to reflect different characteristics

348 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013

Fig. 8. Example of eliminating redundancies at policy level.

of rule subspace. R property is used to indicate that a rule
subspace is removable. In other words, removing such a rule
subspace does not make any impact on the original
authorization space of an associated policy. SI property
means that a rule subspace cannot be removed, because
1) this rule subspace belongs to an irremovable rule with
respect to multivalued requests, or 2) the effect of corre-
sponding policy segment can be only decided by this rule.
WI property is assigned to a rule subspace when any
subspace belonging to the same rule has SI property. That
means a rule subspace becomes irremovable due to the
reason that other portions of this rule cannot be removed.
C property is assigned to multiple rule subspaces covered by
a policy segment, if the effect of this policy segment can be
determined by any of these rules. We next introduce four
processes to perform the property assignments to all of rule
subspaces within the segments of a policy, considering
irremovable rules and different categories of policy segments.

Process 1: Property assignment for the rule subspace
belonging to an irremovable rule. An irremovable rule can be
identified by calling function IrremovableCheck(). All
subspaces belonging to an irremovable rule are assigned
with SI property.

Process 2: Property assignment for the rule subspace covered
by a nonoverlapping segment. A nonoverlapping segment
contains only one rule subspace. Thus, this rule subspace is
assigned with SI property. Other rule subspaces associated
with the same rule are assigned with WI property,
excepting the rule subspaces that already have SI property.

Process 3: Property assignment for rule subspaces covered by a
conflicting segment. We present this property assignment
process based on the following three cases of rule
combining algorithm:

1. CA ¼ First-Applicable. In this case, the first rule
subspace covered by the conflicting segment is
assigned with SI property. Other rule subspaces in
the same segment are assigned with R property.
Meanwhile, other rule subspaces associated with the
same rule are assigned with WI property except the
rule subspaces already having SI property.

2. CA ¼ Permit-Overrides. All subspaces of “deny”
rules in this conflicting segment are assigned with
R property. If there is only one “permit” rule
subspace, this case is handled, which is similar to the
First-Applicable case. If any “permit” rule subspace
has been assigned with irremovable property, other
rule subspaces without irremovable property are
assigned with R property. Otherwise, all “permit”
rule subspaces are assigned with C property.

3. CA ¼ Deny-Overrides. This case is dealt with as the
same as Permit-Overrides case.

Process 4: Property assignment for rule subspaces covered by a
nonconflicting overlapping segment. If any rule subspace has
been assigned with irremovable property, other rule sub-
spaces without irremovable property are assigned with
R property. Otherwise, all subspaces within the segment
are assigned with C property.

Fig. 8b shows the result of applying our property
assignment mechanism to the example presented in
Fig. 8a. We can easily identify that r3 and r8 are removable

rules, where all subspaces are with R property. However,
we need to further examine the correlated rules r2, r4, and r7,
which contain subspaces with C property.

5.1.4 Rule Correlation Break and Redundancy Removal

Rules covered by an overlapping segment are correlated
with each other when the effect of the overlapping segment
can be determined by any of those rules. Thus, keeping one
correlated rule and removing others do not change the
effect of the overlapping segment. In addition, some rules
may get involved in multiple correlated relations. For
example, in Fig. 8b, r4 has two subspaces that are involved
in the correlated relations with r2 and r7, respectively.
Therefore, similar to the construction of conflict correlation
groups, we build rule correlation groups based on these two
situations so that dependent relationships among multiple
correlated rules within one group can be examined
simultaneously. For example, a correlation group consisting
of three rules r2, r4, and r7 can be identified in Fig. 8b.

The goal of rule correlation break is to discover as many
redundant rules as possible. Different sequences to break
rule correlations may lead to different results for redun-
dancy removal. For example, Fig. 9a shows correlated
relations of rules r2, r4, and r7, and we can break their
correlated relations into different sequences. As shown in
Fig. 9b, if we first choose r2 as an irremovable rule and assign
r2’ subspace SI property, only r4 becomes an removable rule
and r7 is turned to be irremovable. However, as shown in
Fig. 9c, if we first choose r4 as an irremovable rule and assign
two subspaces of r4 with SI property, both r2 and r7 then
become removable rules. To seek an optimal solution for rule
correlation break, we measure a breaking degree for each
correlated rule r, denoted as BDðrÞ, which indicates the
number of removable rules if choosing r as an irremovable
rule. BDðrÞ can be calculated with the following equation:

BDðrÞ ¼
X

si2CSðrÞ
ðNCðsiÞ � 1Þ; ð2Þ

where function CSðrÞ returns the set of all overlapping
segments covering correlated subspaces of the rule r, and
function NCðsiÞ returns the number of correlated rules
covered by the segment si. For example, CSðr4Þ returns a
segment set {s3, s5} and NCðs3Þ equals to 2. Since choosing r
as an irremovable rule turns the subspaces of other rules
covered by the segment si to removable, NCðsiÞ � 1 donates
the number of these removable rules. Consequently, BDðrÞ
aggregates the number of removable rules if setting r as
irremovable. To maximize the number of removable
rules for redundancy elimination, our correlation break
process selects the rule with the maximum BD value as
the candidate irremovable rule each time. For instance,
applying this equation to compute breaking degrees of
three rules demonstrated in Fig. 9a, both BDðr2Þ and
BDðr7Þ are equal to 1, and BDðr4Þ is equal to 2. Thus, we

HU ET AL.: DISCOVERY AND RESOLUTION OF ANOMALIES IN WEB ACCESS CONTROL POLICIES 349

Fig. 9. Example of rule correlation break.

choose r4 as the candidate irremovable rule in the first step
for rule correlation break. Finally, two rules r2 and r7

become removable after breaking all correlations.
The pseudocode of the algorithm for eliminating

redundancy at policy level is shown in Algorithm 5. Note
that a function IrremovableCheck() is called to check if
a candidate rule is truly removable considering multi-
valued requests before removing the rule from the policy.
Fig. 8c depicts the result of applying this algorithm to the
example given in Fig. 8a. Four rules r2, r3, r7, and r8 were
identified as redundant rules and removed from the policy.
However, if we leverage the traditional redundancy detec-
tion method [23], [3], which was limited to detect pairwise
redundancies, to this example, only two redundant rules r2

and r7 can be discovered.

5.2 Redundancy Elimination at Policy Set Level

Similar to the solution of conflict detection at policy set
level, we handle the redundancy removal for a policy set
based on an XACML tree structure representation. If the
children nodes of the policy set is a policy node in the tree,
we perform RedundancyEliminate_P() function to
eliminate redundancies. Otherwise, RedundancyElimi-
nate_PS() function is excused recursively to eliminate
redundancy in a policy set component.

After each component of a policy set PS performs
redundancy removal, the authorization space of PS can be
then partitioned into disjoint segments by performing
Partition() function. Note that, in the solution for
conflict detection at policy set level, we aggregate author-
ization subspaces of each child node before performing
space partition, because we only need to identify conflicts
among children nodes to guide the selection of policy
combining algorithms for the policy set. However, for
redundancy removal at policy set level, both redundancies

among children nodes and rule (leaf node) redundancies,
which may exist across multiple policies or policy sets,
should be discovered. Therefore, we keep the original
segments of each child node and leverage those segments to
generate the authorization space segments of PS. Fig. 10
demonstrates an example of authorization space segmenta-
tion of a policy set PS with three children components P1,
P2, and P3. The authorization space segments of PS are
constructed based on the original segments of each child
component. For instance, a segment s02 of PS covers three
policy segments P1:s1, P2:s1, and P3:s2, where Pi:sj denotes
that a segment sj belongs to a policy Pi.

The property assignment step at policy set level is similar
to the property assignment step at policy level, except that
the policy combining algorithm Only-One-Applicable needs
to be taken into consideration at policy set level. The Only-
One-Applicable case is handled similar to the First-Applicable
case. We first check whether the combining algorithm is
applicable. If the combining algorithm is applicable, the
only applicable subspace is assigned with SI property.
Otherwise, all subspaces within the policy set’s segment are
assigned with R property.

After assigning properties to all segments of children
components of PS, we next examine whether any child
component is redundant. If a child component is redun-
dant, this child component and all rules contained in the
child component are removed from PS. Then, we examine
whether there exist any redundant rules. In this process,
the properties of all rule subspaces covered by a removable
segment of a child component of PS needs to be changed to
removable. Note that when we change the property of a
strong irremovable rule subspace to removable, other sub-
spaces in the same rule with dependent WI property need to
be changed to removable correspondingly.

6 IMPLEMENTATION AND EVALUATION

We have implemented a policy analysis tool called
XAnalyzer in Java. Based on our policy anomaly analysis
mechanism, it consists of four core components: segmenta-
tion module, effect constraint generation module, strategy
mapping module, and property assignment module. The
segmentation module takes XACML policies as an input
and identifies the authorization space segments by parti-
tioning the authorization space into disjoint subspaces.
XAnalyzer utilizes APIs provided by Sun XACML

350 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013

Fig. 10. Example of authorization space segmentation at policy set level
for redundancy discovery and removal.

implementation [27] to parse the XACML policies and
construct Boolean encoding. JavaBDD [15], which is based
on BuDDy package [10], is employed by XAnalyzer to
support BDD representation and authorization space
operations. The effect constraint generation module takes
conflicting segments as an input and generates effect
constraints for each conflicting segment. Effect constraints
are generated based on strategies assigned to each conflict-
ing segment. The strategy mapping module takes conflict
correlation groups and effect constraints of conflicting
segments as inputs and then maps assigned strategies to
standard XACML combining algorithms for examined
XACML policy components. The property assignment
module automatically assigns corresponding property to
each subspace covered by the segments of XACML policy
components. The assigned properties are in turn utilized to
identify redundancies.

We evaluated the efficiency and effectiveness of XAna-
lyzer for policy analysis on both real-life and synthetic
XACML policies. Our experiments were performed on Intel
Core 2 Duo CPU 3.00 GHz with 3.25-GB RAM running on
Windows XP SP2. In our evaluation, we utilized five real-
life XACML policies, which were collected from different
sources. Three of the policies, CodeA, Continue-a, and
Continue-b are XACML policies used in [11]; among them,
Continue-a and Continue-b are designed for a real-world web
application supporting a conference management. Grade-
Sheet is utilized in [7]. The Pluto policy is employed in
ARCHON system,3 which is a digital library that federates
the collections of physics with multiple degrees of metadata
richness. In addition, we generated four large synthetic
policies SyntheticPolicy-1, SyntheticPolicy-2, SyntheticPolicy-3,
and SyntheticPolicy-4 for further evaluating the performance
and scalability of our tool. These synthetic policies are
multilayered, where each policy component has a randomly
selected combining algorithm and each rule has randomly
chosen attribute sets from a predefined domain. We also
use SamplePolicy, which is the example XACML policy
represented in Fig. 1, in our experiments. Table 2
summarizes the basic information of each policy including
the number of rules, the number of policies, and the number
of policy sets.

We conducted two separate sets of experiments for the
evaluation of conflict detection approach and the evalua-
tion of redundancy removal approach, respectively. Also,
we performed evaluations at both policy level and policy
set level.

Evaluation of conflict detection. Time required by XAna-

lyzer for conflict detection highly depends upon the
number of segments generated for each XACML policy. The
increase of the number of segments is proportional to the
number of components contained in an XACML policy.
From Table 3, we observed that XAnalyzer performs fast
enough to handle larger size XACML policies, even for
some complex policies with multiple levels of hierarchies
along with hundreds of rules, such as two real-life XACML
policies Continue-a and Continue-b and four synthetic
XACML policies. The time trends observed from Table 3
are promising and, hence, provide the evidence of efficiency
of our conflict detection approach.

Evaluation of redundancy removal. In the second set of
experiments, we evaluated our redundancy analysis ap-
proach with the same experimental XACML policies in
terms of two different cases: redundancy removal consider-
ing single-valued requests and redundancy removal con-
sidering multivalued requests. Table 4 summarizes that 140
rules were identified as redundant rules in the experimental
XACML policies by our redundancy removal approach
considering single-valued requests. By comparison, if
multivalued requests were taken into account in our
redundancy removal algorithm, 21 rules became irremova-
ble. Besides, the evaluation results shown in Table 4
indicate the efficiency of our redundancy analysis algorithm
as well.

We also conducted the evaluation of effectiveness by
comparing our redundancy analysis approach with a
traditional redundancy analysis approach [3], [23], which
can only identify redundancy relations between two rules.
Fig. 11a depicts the results of our comparison experiments.
From Fig. 11a, we observed that XAnalyzer could identify
that an average of 5.6 percent of total rules are redundant.
However, a traditional redundancy analysis approach could
only detect an average 3.1 percent of total rules as
redundant rules. Therefore, the enhancement for redun-
dancy elimination was clearly observed by our redundancy
analysis approach compared to a traditional redundancy
analysis approach in our experiments.

Furthermore, when redundancies in a policy are re-
moved, the performance of policy enforcement is improved
generally. For each of XACML policies in our experiments,
Fig. 11b depicts the total processing time in Sun XACML
PDP [27] for responding 10,000 randomly generated XACML
requests. The evaluation results clearly show that the
processing times are reduced after eliminating redundancies

HU ET AL.: DISCOVERY AND RESOLUTION OF ANOMALIES IN WEB ACCESS CONTROL POLICIES 351

TABLE 2
XACML Policies Used for Evaluation

TABLE 3
Conflict Detection Algorithm Evaluation

3. http://archon.cs.odu.edu/.

in XACML policies applying either traditional approach or
our approach, and our approach can obtain better perfor-
mance improvement than the traditional approach.

7 RELATED WORK

Many research efforts have been devoted to modeling and
verification of XACML policies [2], [8], [11]. In [8], the
authors formalized XACML policies using a process algebra
known as communicating sequential processes. This work
utilizes a model checker to formally verify properties of
policies and to compare access control policies with each
other. Fisler et al. [11] introduced an approach to represent
XACML policies with multiterminal BDDs. They developed
a policy analysis tool called Margrave, which can verify
XACML policies against the given properties and perform
change-impact analysis. Ahn et al. [2] presented a for-
malization of XACML using answer set programming
(ASP), which is a recent form of declarative programming,
and leveraged existing ASP reasoners to conduct policy
verification. However, lacking an exhaustive elicitation of
properties, the completeness of the analysis results of policy
verification cannot be guaranteed. In contrast, our approach
for policy anomaly analysis can indicate accurate anomaly
information without the need of any external properties.

Several works presenting policy analysis tools with the
goal of detecting policy anomalies in firewall are closely
related to our work. Al-Shaer and Hamed [3] designed a
tool called Firewall Policy Advisor that can only
detect pairwise anomalies in firewall rules. Yuan et al. [29]

presented a toolkit, FIREMAN, which can detect anomalies
among multiple firewall rules by analyzing the relation-
ships between one rule and the collections of packet spaces
derived from all preceding rules. Liu and Gouda [22]
introduced a method for complete redundancy detection
in firewall rules using a tree representation of firewalls,
called firewall decision trees. However, as we discussed
previously, due to the significant distinctions between
XACML policy and firewall policy, directly applying prior
firewall policy anomaly analysis approaches to XACML is
not suitable.

Some XACML policy evaluation engines, such as Sun
PDP [27] and XEngine [20], [21], have been developed to
handle the process of evaluating whether a request satisfies
an XACML policy. During the process of policy enforce-
ment, conflicts can be checked if a request matches multiple
rules having different effects, and then, conflicts are
resolved by applying predefined combining algorithms in
the policy. In contrast, our tool XAnalyzer focuses on
policy analysis at policy design time. XAnalyzer can
identify all conflicts within a policy and help policy
designers select appropriate combining algorithms for
conflict resolution prior to the policy enforcement. Addi-
tionally, XAnalyzer has the capability of discovering and
eliminating policy redundancies that cannot be dealt with
by policy evaluation engines.

Some works addressed the general conflict resolution
mechanisms for access control [11], [14], [16], [17]. Especially,
Li et al. [17] proposed a policy combining language PCL,
which can be utilized to specify a variety of user-defined

352 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013

TABLE 4
Redundancy Removal Algorithm Evaluation

Fig. 11. Evaluation of a redundancy removal approach.

combining algorithms for XACML. These conflict resolution
mechanisms can be accommodated in our fine-grained
conflict resolution framework. In addition, Bauer et al. [6]
adopted a data-mining technique to eliminate inconsistencies
occurring between access control policies and user’s inten-
tions. By comparison, our approach detects and resolves
anomalies within access control policies caused by over-
lapping relations.

Other related work includes XACML policy integration
[24], [26] and XACML policy similarity analysis [19]. In
particular, Lin et al. [18] designed a comprehensive
environment called EXAM for XACML policy analysis and
management. EXAM can be used to perform a variety of
functions, such as policy property analysis, policy similarity
analysis, and policy integration. In contrast, our tool
XAnalyzer also deals with policy analysis but focuses on
policy anomaly detection and resolution.

8 CONCLUSION

We have proposed an innovative mechanism that facilitates

systematic detection and resolution of XACML policy
anomalies. A policy-based segmentation mechanism and a

grid-based representation technique were introduced to

achieve the goals of effective and efficient anomaly analysis.
In addition, we have described an implementation of a

policy anomaly analysis tool called XAnalyzer. Our

experimental results showed that a policy designer could
easily discover and resolve anomalies in an XACML policy

with the help of XAnalyzer. We believe our systematic

mechanism and tool will significantly help policy managers
support an assurable web application management service.

As our future work, the coverage of our approach needs to

be further extended with respect to obligations and user-
defined functions in XACML. Moreover, we would explore

how our anomaly analysis mechanism can be applied to

other existing access control policy languages. In addition,
we plan to conduct formal analysis [2], [12] of policy

anomalies, particularly dealing with multivalued requests.

ACKNOWLEDGMENTS

This work was supported in part by the grants from the
US National Science Foundation (NSF-IIS-0900970 and
NSF-CNS-0831360) and the Department of Energy (DE-
SC0004308).

REFERENCES

[1] D. Agrawal, J. Giles, K. Lee, and J. Lobo, “Policy Ratification,”
Proc. Sixth IEEE Int’l Workshop Policies for Distributed Systems and
Networks, pp. 223-232, 2005.

[2] G. Ahn, H. Hu, J. Lee, and Y. Meng, “Representing and Reasoning
about Web Access Control Policies,” Proc. 34th Ann. IEEE
Computer Software and Applications Conf., pp. 137-146, 2010.

[3] E. Al-Shaer and H. Hamed, “Discovery of Policy Anomalies in
Distributed Firewalls,” Proc. IEEE INFOCOM, vol. 4, pp. 2605-
2616, 2004.

[4] J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete
Analysis of Configuration Rules to Guarantee Reliable Network
Security Policies,” Int’l J. Information Security, vol. 7, no. 2, pp. 103-
122, 2008.

[5] A. Anderson, “Evaluating XACML as a Policy Language,”
technical report, OASIS, 2003.

[6] L. Bauer, S. Garriss, and M. Reiter, “Detecting and Resolving
Policy Misconfigurations in Access-Control Systems,” ACM Trans.
Information and System Security, vol. 14, no. 1, p. 2, 2011.

[7] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and L.
Iftode, “Enforcing Authorization Policies Using Transactional
Memory Introspection,” Proc. 15th ACM Conf. Computer and Comm.
Security, pp. 223-234, 2008.

[8] J. Bryans, “Reasoning about XACML Policies Using CSP,” Proc.
Workshop Secure Web Services, p. 35, 2005.

[9] R. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. C-100, no. 35,
pp. 677-691, Aug. 1986.

[10] Buddy, “Buddy Version 2.4, 2010,” http://sourceforge.net/
projects/buddy, 2013.

[11] K. Fisler, S. Krishnamurthi, L. Meyerovich, and M. Tschantz,
“Verification and Change-Impact Analysis of Access-Control
Policies,” Proc. 27th Int’l Conf. Software Eng., pp. 196-205, 2005.

[12] H. Hu and G. Ahn, “Enabling Verification and Conformance
Testing for Access Control Model,” Proc. 13th ACM Symp. Access
Control Models and Technologies, pp. 195-204, 2008.

[13] H. Hu, G. Ahn, and K. Kulkarni, “Fame: A Firewall Anomaly
Management Environment,” Proc. Third ACM Workshop Assurable
and Usable Security Configuration, pp. 17-26, 2010.

[14] S. Jajodia, P. Samarati, and V.S. Subrahmanian, “A Logical
Language for Expressing Authorizations,” IEEE Symp. Security
and Privacy, pp. 31-42, May 1997.

[15] JavaBDD, “JavaBDD, 2007,” http://javabdd.sourceforge.net, 2013.
[16] J. Jin, G. Ahn, H. Hu, M. Covington, and X. Zhang, “Patient-

Centric Authorization Framework for Sharing Electronic Health
Records,” Proc. 14th ACM Symp. Access Control Models and
Technologies, pp. 125-134, 2009.

[17] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and D. Lin,
“Access Control Policy Combining: Theory Meets Practice,” Proc.
14th ACM Symp. Access Control Models and Technologies, pp. 135-
144, 2009.

[18] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo, “Exam: A
Comprehensive Environment for the Analysis of Access Control
Policies,” Int’l J. Information Security, vol. 9, no. 4, pp. 253-273,
2010.

[19] D. Lin, P. Rao, E. Bertino, and J. Lobo, “An Approach to Evaluate
Policy Similarity,” Proc. 12th ACM Symp. Access Control Models and
Technologies, pp. 1-10, 2007.

[20] A. Liu, F. Chen, J. Hwang, and T. Xie, “XEngine: A Fast and
Scalable XACML Policy Evaluation Engine,” ACM SIGMETRICS
Performance Evaluation Rev., vol. 36, no. 1, pp. 265-276, 2008.

[21] A. Liu, F. Chen, J. Hwang, and T. Xie, “Designing Fast and
Scalable XACML Policy Evaluation Engines,” IEEE Trans. Com-
puters, vol. 60, no. 12, pp. 1802-1817, Dec. 2011.

[22] A. Liu and M. Gouda, “Complete Redundancy Detection in
Firewalls,” Proc. 19th Ann. IFIP Conf. Data and Applications Security,
2005.

[23] E. Lupu and M. Sloman, “Conflicts in Policy-Based Distributed
Systems Management,” IEEE Trans. Software Eng., vol. 25, no. 6,
pp. 852-869, Nov./Dec. 1999.

[24] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino,
“XACML Policy Integration Algorithms,” ACM Trans. Information
and System Security, vol. 11, no. 1, article 4, 2008.

[25] T. Moses et al, “Extensible Access Control Markup Language
(XACML) Version 2.0,” Oasis Standard, 200502, 2005.

[26] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, “An Algebra for Fine-
Grained Integration of XACML Policies,” Proc. 14th ACM Symp.
Access Control Models and Technologies, pp. 63-72, 2009.

[27] Sun XACML, “Sun XACML Implementation,” http://sunxacml.
sourceforge.net, 2006.

[28] XACML, “OASIS XACML Committee Website,” http://www.
oasis-open.org/committees/xacml/, 2011.

[29] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra, and
C. Davis, “Fireman: A Toolkit for Firewall Modeling and
Analysis,” Proc. IEEE Symp. Security and Privacy, pp. 199-213,
2006.

HU ET AL.: DISCOVERY AND RESOLUTION OF ANOMALIES IN WEB ACCESS CONTROL POLICIES 353

Hongxin Hu received the PhD degree in
computer science from Arizona State University,
Tempe, in 2012. He is an assistant professor in
the Department of Computer and Information
Sciences at Delaware State University. His
current research interests include access con-
trol models and mechanisms, security and
privacy in social networks, security in cloud
and mobile computing, network and system
security, and secure software engineering. He is
a member of the IEEE.

Gail-Joon Ahn received the PhD degree in
information technology from George Mason
University, Fairfax, Virginia, in 2000. He is an
associate professor in the School of Comput-
ing, Informatics, and Decision Systems Engi-
neering, Ira A. Fulton Schools of Engineering
and the director of Security Engineering for
Future Computing Laboratory, Arizona State
University. His research has been supported by
the US National Science Foundation, the

National Security Agency, the US Department of Defense, the US
Department of Energy, Bank of America, Hewlett Packard, Microsoft,
and the Robert Wood Johnson Foundation. He received the US
Department of Energy CAREER Award and the Educator of the Year
Award from the Federal Information Systems Security Educators
Association. He is a senior member of the IEEE.

Ketan Kulkarni received the master’s degree in
computer science from Arizona State University.
He was also a member of the Security En-
gineering for Future Computing Laboratory,
Arizona State University. He is currently a
software engineer at NVIDIA.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

354 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 10, NO. 6, NOVEMBER/DECEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

