
Dynamic and Risk-Aware Network Access Management

Lawrence Teo
∗

Gail-Joon Ahn
†

Yuliang Zheng
∗

Laboratory of Information Integration, Security, and Privacy (LIISP)
University of North Carolina at Charlotte

9201 University City Blvd, Charlotte, NC 28223, USA
http://www.sis.uncc.edu/LIISP/

{lcteo,gahn,yzheng}@uncc.edu

ABSTRACT
Traditional network security technologies such as firewalls
and intrusion detection systems usually work according to a
static ruleset only. We believe that a better approach to net-
work security can be achieved if we use quantified levels of
risk as an input. In this paper, we describe a dynamic access
control architecture which uses risk to determine whether
to allow or deny access by a source connection into the net-
work. A simulation of our architecture shows favorable and
promising results.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection; C.2.3 [Computer-Communication

Networks]: Network Operations—network management,
network monitoring ; K.6.5 [Management of Computing

and Information Systems]: Security and Protection—
authentication, invasive software, unauthorized access

General Terms
Security, management, algorithms

Keywords
Dynamic access control, network management, risk, risk
awareness, role

1. INTRODUCTION
∗also affiliated with: Calyptix Security Corporation,
P.O. Box 561508, Charlotte, NC 28256, USA.
http://www.calyptix.com/
†The work of Gail Ahn has been partially supported by
the grants from National Science Foundation (NSF-CCR-
0124873) and National Security Agency (MDA904-02-1-
0218).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’03, June 2–3, 2003, Como, Italy
Copyright 2003 ACM 1-58113-681-1/03/0006 ...$5.00.

Traditional network security technologies, particularly fire-
walls and intrusion detection systems (IDSs), usually work
in a static manner. By “static”, we mean that they do not
change their behavior in response to certain events. Con-
sider a typical packet-filtering firewall. It first reads the
rulesets as specified by the administrator. When packets ar-
rive, it compares the header and content of the packet with
the previously defined rules. If the packet is allowed accord-
ing to the ruleset, the firewall would allow the packet to go
through; conversely, if the rules do not allow the packet to
go through, the packet is denied. The point that we can
observe here is that the firewall either allows or denies the
packet based on an “all-or-nothing” approach.

Let us consider another example. Suppose we have a
signature-based IDS installed in the network. Like the fire-
wall, the IDS initially reads in signatures defined and cus-
tomized by the administrator. Then, as packets arrive into
the network, the IDS either logs the connections as intru-
sions or legitimate traffic. A connection is either an intrusion
or is legitimate; there can be no “in-betweens.”

We believe that a static decision-making approach based
on static input, as described earlier, is not sufficient to achieve
full network security. This is evident when we examine the
problems posed by the static approach in everyday situa-
tions. Firewalls still allow malicious traffic to enter the
network. For example, a common firewall policy is to al-
low connections through port 80, thus allowing malicious
programs like Code Red to attack web servers. Intrusion
detection systems still produce false positives. There is no
way to change this unless the static firewall ruleset or IDS
signatures are updated manually by the administrator.

The inefficiency of the static approach is clearly evident
when we examine the fastest computer worm to date – the
SQL Slammer/Sapphire worm [9] that spread around the
world in just 10 minutes on January 25, 2003. The worm
exhibited highly unusual traffic which was easily recogniz-
able. However, human intervention was still required to up-
date firewalls and routers to prevent the worm from spread-
ing further. Now that high speed worms are no longer a
theoretical threat, it is clear that human-mediated counter-
responses, as required by the static approach, is no longer
feasible [13].

To address these problems, there is a need to use a dy-
namic approach to determine threats. A dynamic approach
would be able to intelligently decide if a source is a threat or
not, based on dynamic conditions in the network, as opposed
to static rules. This enables us to allow the “in-betweens.”

217

The dynamic approach would use risk as an input to adapt
to varying network conditions. In contrast, static rules may
not be relevant in certain conditions (recall the Code Red
example). Risk refers to how much or how little a source
can be trusted.

The need to use risk and a dynamic approach is espe-
cially evident when we draw a few examples from the real
world. Risk is generally determined using two criteria in the
real world: measures and signs. A measure here refers to a
quantifiable amount that represents risk. Suppose a person
would like to apply for a bank loan. In order to determine
whether the applicant can be trusted to repay the loan or
not, the bank looks at the credit rating, which is a measure
of how much risk the applicant possesses. Another example
can be seen when a student applies for a scholarship. The
student’s Grade Point Average (GPA) or similar measure
would highly affect the student’s chances of being awarded
the scholarship. The other criterion for determining risk has
to do with signs. Suppose a salesperson is attempting to sell
a product to a customer. Signs such as the salesperson’s ap-
pearance, communication skills, and dressing would all play
a part in determining whether the sale would be successful
or not.

In our project, we aim to build a security architecture that
uses a dynamic access control scheme to perform risk-aware
network security management. This system would use the
“in-betweens” approach as opposed to the “all-or-nothing”
approach. Our objective is to examine the feasibility of us-
ing a dynamic access control scheme to perform network
security management. We also investigate the use of risk
as a more effective way to identify threats. Based on these
objectives, we aim to design a new approach to complement
existing firewalls and intrusion detection systems. It should
be stressed that we are choosing to make this a complemen-
tary approach rather than a replacement for firewalls and
IDSs. The reason is that it is unlikely that organizations
would replace their existing network security mechanisms
with something entirely new. Therefore, we are introducing
a new entity into the network, not to replace current security
systems, but to complement them.

The rest of the paper is organized as follows. Section 2
describes the background and related work. Section 3 de-
scribes the dynamic access control architecture. We discuss
the policy specification and policy enforcement in Sections
4 and 5 respectively. A simulation of the architecture, along
with the results, are described in Section 6. A discussion
of issues is given in Section 7. Ongoing and future work is
suggested in Section 8, before the conclusion in Section 9.

2. BACKGROUND AND RELATED WORK
The notion of dynamic access control can be traced back

to early work done by Thomas and Sandhu [14, 15, 16]. Tra-
ditional access control mechanisms employ a subject-object
view. Thomas and Sandhu argued that this view is no longer
sufficient for newer systems. In order to cater for distributed
and multi-tiered applications, access control has to be per-
formed at a higher level of abstraction. They called their
approach task-based access control.

Another project named Seraphim [10] is a generic, theo-
retical framework for dynamic policy specification and en-
forcement. The difference between Seraphim and our work
is that Seraphim is a generic framework, while we are con-
centrating more specifically on the network environment.

Internet

Firewall

Node

Authorization

Enforcement

Facility (
 AEF
)

Node

Node

Node

Figure 1: Conceptual view of the network.

Knorr [6] did some work on performing dynamic access
control using petri net workflows. There are other related
projects on dynamic access control in different contexts. For
example, Lin, Lee, and Chang [7] described a dynamic ac-
cess control mechanism in the area of information protection
systems. Harn and Lin [3] and Yen and Laih [18] developed
dynamic access control schemes that enforce user authenti-
cation, based on public key cryptography.

3. ARCHITECTURE
This section describes the dynamic access control archi-

tecture that enables risk-aware network access management.
We will use the conceptual view of the network in Figure 1 to
describe the architecture. The diagram shows a typical net-
work with a firewall and various nodes behind the firewall.
Please note that this is a packet-filtering firewall. However,
we have now introduced a new entity called the Authoriza-
tion Enforcement Facility (AEF) which would be used to
realize the ideas described in this paper. More specifically,
the AEF is mainly used for policy enforcement and enable
risk-aware network access management.

Before we describe the responsibilities of the AEF, we will
first discuss why risk-aware network access is important in
the context of this architecture. Let’s begin with a discus-
sion of the role of a typical firewall in an organizational net-
work. The firewall’s main role is to filter traffic based on an
administrator-defined ruleset. For example, the ruleset may
specify that access to certain network ports is not allowed,
or that external packets with internal IP addresses arriving
from the Internet would not be allowed.

Although this is the standard function of the firewall at
present, there are still critical issues with it that need to be
resolved. One significant problem is that although certain
traffic may look legitimate, they may actually be malicious.
Such traffic would still bypass the firewall. Therefore, al-
though traffic may be allowed to pass through by the fire-
wall, we still cannot be totally sure about its intentions.
A clear indication of this problem is evident when we look
at common attacks today, such as worms like Code Red.
Code Red is successful in penetrating packet-filtering fire-
walls, because it attacks webservers with traffic looking like
regular HTTP connections to port 80 (which is a commonly
allowed port in most organizations). Other types of attacks

218

which can bypass firewalls by posing as legitimate traffic
are rogue web services and malformed packets (for example,
TCP packets with non-standard flag combinations) that are
not filtered by the firewall ruleset.

With risk-aware network access management, we can mit-
igate this problem by examining the traffic to determine how
risky it is, even if it looks legitimate. This is the function
of the AEF. The AEF analyzes incoming traffic and deter-
mines the amount of risk associated with each source. If the
risk is low, the AEF would allow the connection to reach
its intended destination node. If the risk is high, the AEF
would deny access to the destination node.

Another important point needs to be made before we move
on to the rest of this section. A firewall is normally con-
cerned with the authorization of traffic. The firewall ruleset
describes what the input packets can access. However, from
the standpoint of this paper, it is probably more accurate
to think of the firewall as performing authentication instead
of authorization. The firewall “authenticates” the traffic
and ensures that only traffic that is recognized as legitimate
passes through. The AEF, on the other hand, would per-
form authorization. The AEF only works with traffic that
has been authenticated by the firewall. The AEF deter-
mines whether these already-authenticated connections are
actually allowed to access their intended destinations or not.
The four key points are:

• The firewall authenticates input traffic, by ensuring
that only traffic that is allowed by the ruleset can pass.
The firewall performs authentication.

• The AEF only works with traffic that has been au-
thenticated by the firewall. The AEF is concerned
with authorization.

• The AEF performs risk-aware network access manage-
ment, by determining the risk with each source connec-
tion and allowing or denying it to access its destination
nodes based on its risk.

• All traffic must pass through the AEF for authoriza-
tion.

3.1 Elements
This section describes the elements in the architecture.

We will first describe nodes, services, and sources. This is
followed by a discussion of node values and service values.
We then show how roles relate to the nodes and services.

3.1.1 Nodes, Services, and Sources
To protect a network using risk-aware network access man-

agement, we first need to determine what our assets are, and
which ones we try to protect. For the purposes of this paper,
the assets to be protected are nodes and services.

The first basic element in the architecture is a node. We
use the term “node” in the same way that it is used in
networking; it refers to a particular machine or device in
the network. For example, a node may be a workstation,
web server, mail server, laptop, and so on.

The second element is a service. A service refers to the
network and Internet services provided by the node. For
example, a webserver node may offer services such as HTTP,
SSH, and FTP.

The nodes and services act as the destinations for incom-
ing traffic. For example, a source S may wish to connect to
the HTTP service on destination node A.

We use the term source to denote a generic input into
the architecture. For example, a source may be a packet,
connection (a series of related packets), or a stream. The
definition of source is intentionally left generic so that it can
be used to represent different kinds of input, as the need
arises.

3.1.2 Node Values and Service Values
In a typical organization, not all nodes are equal. An ad-

ministrator would take more care to set up security measures
on an important node such as a mission critical production
webserver, than s/he would on an employee workstation.
So, how do we determine if one node is more valuable than
another?

This question is addressed by the next element: the node
value. A node value is a measurable quantity that states how
valuable a node is. This concept is best explained using an
example. Suppose the node value is measured on a scale of 1
to 10, where 1 represents least importance and 10 represents
critical importance. Nodes such as unimportant anonymous
FTP servers or honeypots would be assigned a node value
of 1, which means that they are not important. In contrast,
nodes such as production servers would be assigned a high
node value like 9 or 10 to reflect their importance. The
specific value to assign to each node is dependent on the
organizational security policy.

Like nodes, each service can be assigned a service value,
which states how valuable the service is. It should be noted
that the service value is dependent on the node value. This
is required, since the value of a particular service on node A

may be different from that of node B. For example, the SSH
service may be considered more important on a production
webserver than it is on an internal mailing list server. The
actual way in which the node value and service value are
used to determine threats will be explained in a later section
of this paper.

3.1.3 Roles
If we have many nodes and services on a network, espe-

cially in a large organization, it may be very difficult to
assign values to nodes and services throughout the network.
Suppose a large international organization has 50 produc-
tion webservers and 25 development webservers. Consider
the scenario when the decision is made to increase the value
of the HTTP service on every production webserver, and de-
crease the value of the HTTP service on every development
webserver. If this happens, the administrator would have to
locate every single production webserver and development
webserver and change the HTTP service values. The com-
plexity increases greatly when there are more servers and
similar decisions.

To reduce the complexity of node management and to
facilitate assignment of values to nodes and services, we in-
troduce the concept of the role. This is somewhat similar to
the meaning of a role in Role-Based Access Control (RBAC)
[11]. However, the important distinction is that we are us-
ing the role to keep track of node values and service values
instead of permissions.

A role consists of four parts: a name, a node value, ser-
vices offered by the node, and service values. This concept

219

Role

Name

'web'

Node Value

6

Services

Service Value
 1

http=3

sv
 2

ssh
 =5

sv
 3

ftp
 =2

sv
 n
.....

Figure 2: Example of a ‘web’ role.

is illustrated in Figure 2. Figure 2 shows a role named web
which has a node value of 6. Part of the services offered
by the web role are HTTP, SSH, and FTP. These services
are assigned the service values 3, 5, and 2 respectively. This
means that the SSH service is considered most valuable, fol-
lowed by the HTTP service and FTP service.

Using a role such as web, we can facilitate assignment of
node values and service values to nodes. For example, if we
have 5 nodes and we assign them the web role, each node will
have the node values and service values defined by the web
role immediately. This is much more efficient than assigning
the node values and service values to each individual node
manually.

3.2 Threat Levels
To determine the risk associated with each source, the risk

must be available as a quantifiable measure. The measure
we use for the source is called the threat level. A threat level
represents how suspicious the source is. This measure can
be likened to the real world metaphors of the credit rating
and GPA that were discussed in the introduction.

We can specify the threat level of a source using the
threatLevel() function. For example, we can specify the
threat level for the source 192.168.1.1 using the notation:

threatLevel(192.168.1.1) = 2.45

The threatLevel() function returns the threat level of the
source. In this case, the threat level of the source 192.168.1.1
is 2.45. The idea is that the more suspicious the source is,
the higher its threat level will be. The threat level is meant
to be dynamic – it will change dynamically based on risk
that is perceived in the network.

3.3 Thresholds
Each node value and service value has an associated thresh-

old. The threshold represents the tolerance of the node or
service to suspicious events. For example, we can specify
that the threshold of a node value of 6 is 4, using the node-
Threshold() function in this notation:

nodeThreshold(6) = 4

The higher a node value or service value is, the lower its
threshold will be. This means that the more valuable a node
or service is, the lower its tolerance to suspicious events.

This is required because we do not want highly valuable
nodes and services to receive suspicious or malicious traffic.
Unlike the threat level which is dynamic, the threshold is
static.

3.4 Actions
As discussed earlier, the threat level changes dynamically.

However, there has to be a set of criteria that determines
how the threat level changes. In our architecture, the threat
level will change based on events. The operation that actu-
ally changes the threat level is known as an action.

An action has two purposes: the first is to adjust the
threat level, and the second is to act as a countermeasure
that is triggered as a result of an event. For a typical action,
we can define the event that would trigger the action, and
how much we should adjust the threat level if that event
were to occur. For example, in natural language, we can
require an action to “increase the threat level by 5% if we
encounter a network packet with buffer overflow shellcode.”

The new threat level is calculated based on the previous
threat level. The threat level t` at time i + 1 is determined
by the threat level at time i. This is specified as:

t`i+1 = t`i op adj

op is the mathematical operator, and can be any element
in the set < +,−,×,÷ >. adj is the amount that will be
used to adjust the threat level. For example, the following
statement would increase the threat level by 10%:

t`i+1 = t`i × 1.1

The following statement would decrease the threat level
by 0.3:

t`i+1 = t`i − 0.3

At present, we have not specifically described exactly how
the actions would be performed. In the actual implemen-
tation, the actions would be performed by software agents
residing in the AEF and nodes themselves. These agents
need to cooperate in order to perform the action. This is
especially true for actions that trigger countermeasures (for
example, to gather information about DNS records in the
DNS server and correlate it with the network packets seen
by the AEF).

3.5 Notation
We will use the following notation to describe the elements

in our architecture:

N A set of nodes, {n1, ..., ni}.
S A set of services, {s1, ..., sj}.
V A set of node values, {v1, ..., vk}.
W A set of service values, {w1, ..., wl}.
R A set of roles, {r1, ..., rm}.
A A set of actions, {a1, ...an}.

The notation for the functions we use to describe the ar-
chitecture are as follows::

role(i) Returns the role of node i.
services(i) Returns the set of services for

node i.
roleServices(m) Returns the services of role m.

220

nodeServices(i) Returns the services of node i.
Equivalent to
roleServices(role(i)).

nodeValue(i) Returns the node value of
node i.

serviceValue(i,j) Returns the service value of
service j on node i.

nodeThreshold(i) Returns the threshold of
node i.

serviceThreshold(i,j) Returns the threshold of
service j on node i.

nvThreshold(v) Returns the threshold of
node value v.

svThreshold(w) Returns the threshold of
service value w.

nodes() Returns all nodes n1...ni.
nodeActions(i) Returns all actions of node i.
threatLevel(i) Returns the threat level of

source i.

4. POLICY SPECIFICATION
This section describes how the policy is specified in the

architecture. The policy is divided into two sub-policies: a
static policy and a dynamic policy. As their names imply,
the static policy does not change, while the dynamic policy
changes. This section describes both types of policies, and
what is contained in each. A diagram showing how these
policies are related is shown in Figure 3.

Before we proceed with the discussion of static and dy-
namic policies, it is important to understand the rationale
behind why the policy is divided into two sub-policies. The
architecture needs to address two objectives: the first is to
formalize a method to define nodes, services, their respective
values, and roles; the second is to keep track of the threat
levels of sources and ensure that they do not exceed the
preset thresholds. It can be observed that the first objective
and second objective have one main difference: the require-
ments for the first objective do not change frequently, while
the requirements for the second changes frequently in real-
time. Based on this observation, we divide the policy into
two cleanly separated sub-policies. The static policy handles
the first objective and is specified manually by the admin-
istrator, where it may be changed from time to time. The
second objective, on the other hand, would be addressed by
the dynamic policy. Unlike the static policy, the dynamic
policy is initialized and specified by the machine. It should
be noted that the dynamic policy does use certain input
from the static policy as part of the AEF’s decision-making
process.

We would also like to stress that the meanings of static
and dynamic in this context are defined from the viewpoint
of the AEF. Even though the role memberships may be dy-
namic, we assume that they are static when we apply it for
our purpose of network access control.

4.1 Static Policy
The static policy is specified by the administrator. The

static policy is like a regular policy, which does not change
until a modification to the policy is required. If this happens,
then the policy is modified manually by the administrator.

The static policy consists of six parts: constraints, roles,
node-role assignment, the threshold table, services, and ac-
tions. We will now describe each part in turn.

Policy

Static

Policy

Dynamic

Policy

Constraints

Roles

Node-Role Assignment

Threshold Table

Services

Actions

Threat Level

Table

Figure 3: Static and dynamic policies.

With the exception of constraints, the static policy is de-
fined using statements that begin with a declarative key-
word. The statement accepts several arguments after the
keyword. The general schema is:

keyword(
arg1 = val1,
arg2 = val2,

);

This statement uses the keyword keyword to define a rule,
and assigns values val1 and val2 to the variables arg1 and
arg2 respectively. The full policy specification schema is
given in Figure 4.

4.1.1 Constraints
It is important to have flexible constraints in order to

support emerging applications [5]. In our architecture, con-
straints are used to restrict the way in which the policy
is specified. Constraints are needed to ensure that the se-
mantics of the policy are correct. For example, we can use
constraints to enforce the minimum node value to be 1 and
the maximum node value to be 10. The following list shows
six predefined constraints that are used for our architecture:

C1 max(V) = max(W)
C2 min(V) = min(W)
C3 |V | = |W |
C4 serviceValue(i, j) ≤ nodeValue(i),

for any service j on node i

C5 svThreshold(w) ≤ nvThreshold(v), if v = w

C6 min(threatLevel(s)) ≥ 0.1

Constraint C1 states that the maximum node value must
be defined to be the same as the maximum service value.
Conversely, constraint C2 ensures that the minimum node
value must be equal to the minimum service value. Con-
straint C3 ensures that the number of elements in the set
of node values V have to be equal to the service values W .
Constraints C1, C2, and C3 are motivated by the same rea-
son: to ensure consistency and uniformity in the measures
used for both nodes and services. If the measures are not
uniform, the analysis of risks based on these measures may
become complex and result in an inaccurate assessment.

Constraint C4 ensures that all service values for a given
node are always less than the node value of that node. This

221

General schema:

keyword(
arg1 = val1,
arg2 = val2,

);

where

keyword = role|assign|action|services|actions|meta
argument = name|nodevalue|addr|role|dpe|cost|pattern|pass_op|pass_tla|traffic

value = 1|...|n

Role statement:

role(
name = string, // role name
nodevalue = integer, // node value
service_descrip = embed services(), // services structure

);

Services statement:

services(
name = value, // service name (one or many)

),

Node-role assignment statement:
assign(

addr = string, // node address
role = string, // node role name
dpe = string, // dynamic policy enforcement flag
actions_descrip = embed actions(), // actions structure

);

Actions statement:
actions(

name = string, // action name
embed name() // list of action names

),

Node threshold declaration statement:

nodevalue(
integer => integer, // node value -> node threshold

);

Service threshold declaration statement:
servicevalue(

integer => integer, // service value -> service threshold
);

Action declaration statement:

action(
name = string, // action name
cost = string, // cost of performing action
pattern = integer range, // patterns to look for
pass_op = +|-|*|/ // operator to use in threat level adjustment
pass_tla = real, // amount to adjust
traffic = int|ext|both, // traffic type

);

Meta declaration statement:
meta(

minimum_tl = real, // minimum threat level
decrease_trigger = integer, // number of sources before default decrease

);

Figure 4: Policy specification schema.

222

is to ensure that services are able to be accessed as long as
the nodes are accessible.

Constraint C5 states that the service threshold for each
service value v must be less than the node threshold for each
node value w, if v = w. For example, if service threshold for
a service value of 10 must be less than or equal to the node
threshold for a node value of 10. This is done for the same
reason as that for constraint C4.

Constraint C6 ensures that the minimum threat level for
all sources are always greater than or equal to 0.1. 0.1 is
chosen as the minimum threat level instead of 0 for reasons
of simplicity; this reduces the need to address problems such
as division by zero when adjusting the threat level.

Apart from these constraints, additional constraints can
be specified if required. This flexibility would be useful if we
need to fine-tune the policy specification to support specific
organizational objectives. For example, a military environ-
ment has different needs compared to a commercial envi-
ronment. In such scenarios, the ability to add or modify
constraints would be beneficial. The same flexibility would
also be useful when exploring new forms of policies and al-
gorithms based on this architecture.

4.1.2 Roles
The first part of the static policy specifies the roles that

can be assigned to the nodes. As discussed earlier, roles fa-
cilitate management and reduce the complexity of assigning
node values and service values to many nodes. In the static
policy, the role is given a name, a node value, and a list of
service and service value pairs. The role is declared using
the role keyword. For example, the following statement de-
clares the web role, giving it a node value of 4. The services
ssh, ftp, and telnet are given service values 4, 2, and 1 re-
spectively. The node value and service values must conform
to Constraint C4.

role(
name = "web",
nodevalue = 4,
services(

ssh = 4,
ftp = 2,
telnet = 1,

);
);

4.1.3 Node-Role Assignment
The node-role assignment specifies how the roles are as-

signed to the nodes. This assignment is declared using the
assign keyword. The arguments to the declaration are the
source address, the role name, the dpe flag (which stands
for dynamic policy enforcement), and the actions that the
node is “interested” in.

The following example shows a node with the address
192.168.0.1 being addressed to the web role. It states that
dynamic policy enforcement should be carried out on this
node, and the node is interested in the actions ping, oscheck,
and dnscheck.

assign(
addr = "192.168.0.1",
role = "web",
dpe = true,
actions(

ping, oscheck, dnscheck
);

);

4.1.4 Threshold Table
The threshold table defines the thresholds for node values

and service values. The thresholds for the node values and
service values are related, and are restricted by constraints
C1, C2, C3, and C5 from Section 4.1.1. The following ex-
ample shows the threshold table for node values. In this
table, the node value 10 has a threshold of 2, while the node
value 9 has a threshold of 4, and so on.

nodevalue(
10 => 2,
9 => 4,
8 => 6,
7 => 8,
6 => 10,
5 => 12,
4 => 14,
3 => 16,
2 => 18,
1 => 20,

);

The service threshold table for service values use the same
syntax as the node threshold table. The difference is that
the servicevalue keyword is used instead.

servicevalue(
10 => 2,
9 => 3,
8 => 4,
7 => 5,
6 => 6,
5 => 7,
4 => 8,
3 => 9,
2 => 10,
1 => 11,

);

4.1.5 Services
The services policy is specified using a file with the same

format as the /etc/services file found in UNIX systems.
We are using this since /etc/services is a standard and
widely-known format on UNIX systems. This file defines
services and port number assignments. We use the stan-
dard on services and port assignments set by the Internet
Assigned Numbers Authority (IANA) [4].

4.1.6 Actions
Each action is defined using six arguments: name, cost,

pattern, pass op, pass tla, and traffic. The name acts as an
identifier for the pattern. Cost states how much the action
would cost to execute (in terms of resources such as time,
disk storage, network resources, etc.). For example, it would
be more costly to execute an action like correlating traffic
between nodes, than it would be to simply ping the source
of a connection. At present, however, cost is not used in our
simulation, but it is specified here as an argument that can
be used in the future. The pattern argument specifies the
pattern to look for in the source. Once a pattern match is en-
countered, the action would be triggered and executed. An
example of a pattern may be an IDS signature or a certain
value in a particular field in an IP packet. It is intentionally
left generic at this stage.

After being triggered, the action would have to adjust
the threat level. The pass op and pass tla fields define the
operator and threat level adjustment value that would be

223

used to adjust the threat level. The threat level will only
be adjusted if a pattern match is found. In order not to
overcomplicate matters, we do not provide an equivalent
operator and threat adjustment level if there is no pattern
match (if there are such arguments, they would be called
fail op and fail tla respectively).

The last argument is traffic, which can be specified as
either int for internal, ext for external, or both for both
internal and external traffic. This argument instructs the
AEF about the type of traffic to look for – internal, external,
or both.

The following statement defines an action named “ping”
using the action keyword:

action(
name = "ping",
cost = 1,
pattern = 35-38,
pass_op = +,
pass_tla = 0.1,
traffic = both,

);

This action incurs a cost of 1 unit, and looks for patterns
in the range of 35 to 38 (in our simulation, we are just
using integers to represent traffic patterns. In an actual
implementation, we would use a more formal language to
represent these patterns). If the pattern matches are found,
the action would increase the threat level of the source by
0.1 (t` = t`+0.1). This pattern looks for sources in both the
internal and external network, since the traffic argument is
set to both.

Apart from the usual actions, the action policy specifica-
tion has to begin with a meta section which would be de-
clared using the meta keyword. The meta section specifies
two arguments. minimum tl is the minimum threat level
to assign to a new source. This value has to conform to
constraint C6. The second argument is the decrease trigger
field, which specifies how many legitimate sources should be
allowed before we trigger the special default decrease action.
The default decrease action is used to decrease the threat
level. The decrease trigger field and the default decrease
action are both used to reward sources which continuously
exhibit good behavior. The following is an example of how
the meta section can be used to specify a minimum threat
level of 0.1 and a decrease trigger of 10 sources.

meta(
Minimum threat level
minimum_tl = 0.1,

Decrease only after 10 sources of
good behavior (no actions triggered)
decrease_trigger = 10,

);

The special default decrease action is specified in the same
way as regular actions, except that its name has to be “de-
fault decrease”. The following example specifies that the
default decrease action should reduce the threat level by 1%.

Decreases threat level as a reward for good behavior.
action(

name = "default_decrease",
cost = 0,
pattern = 0,
pass_op = *,

AEF

Core

INPUT

(Network Traffic)

Static

Policy

Dynamic

Policy

(2)

(1)

Node

(3),(7)

(4)

(6)

(5)

1. Load static policy

2. Read and analyze network traffic

3. Initialize and load dynamic policy

4. If granted, forward traffic to node

5. Send feedback to
 AEF
 from node

 enforcement agent

6. Update dynamic policy with

 feedback received

7. Reload dynamic policy

Figure 5: Inner workings of the AEF.

pass_tla = 0.99,
traffic = both,

);

4.2 Dynamic Policy
Unlike the static policy which is specified by the admin-

istrator, the dynamic policy is utilized by the computer. As
its name implies, the dynamic policy automatically changes
based on certain conditions.

Compared to the static policy, the dynamic policy is rela-
tively simple. The dynamic policy consists of a threat level
table, which is a two-column table that keeps track of sources
and their current threat levels. In the implementation of our
experimental prototype for the simulation, this table was
implemented as a hash table that takes in the traffic mode
(internal or external) of the source and the source address,
and maps to the threat level of the source:

H: (traffic mode,src addr) → threatLevel(src)

Upon the trigger of an action on a source, the threat level
of the source would be adjusted. The new value of the threat
level would then be reflected in the hash table.

5. POLICY ENFORCEMENT
As described earlier in Section 3, we have introduced a

new entity called the Authorization Enforcement Facility, or
AEF. This section describes how the policy is enforced using
the AEF. We show how the policy specified in Section 4
is loaded by the AEF, and how the AEF makes decisions
about whether to allow or deny access from a source into
the network.

A high-level flow of the inner workings of the AEF is
shown in Figure 5. First, the AEF loads the static pol-
icy. Then, as traffic comes in, the AEF would read and
analyze each source (recall that source is a generic term for
a packet, connection, or stream). As the first source arrives,
the AEF would initialize and load the dynamic policy. The
AEF then determines the risk associated with the source.
Access is determined at this point. If the risk is low, access
is granted to the destination node and service.

Before we commence our discussion on policy enforce-
ment, it is important to first understand the relationship
between policy specification and policy enforcement. This
relationship is illustrated by the way in which the static pol-
icy is used by the dynamic policy. When the AEF loads the

224

static policy, it would also load the sub-policies under the
static policy, which are the constraints, roles, node-role as-
signments, thresholds, services, and actions. Based on this
information, nodes are assigned roles, and both nodes and
services are given their specified thresholds. The node-role
mapping and threshold table are kept in the AEF’s inter-
nal memory. The threat level table in the dynamic policy is
also initialized by the AEF, which would assign initial threat
levels (the minimum) to all sources. Policy enforcement is
generally performed like this: when new sources arrive at
the network, the AEF would examine them to see whether
they match any patterns defined by the actions in the pol-
icy specification. If they do, then the action would increase
the threat level. When the threat level increases beyond
the thresholds allowed by the static policy, access would be
denied. In all other cases, access is allowed.

Now that the basic idea of how policy specification assists
enforcement has been addressed, we will discuss, in greater
detail, how the AEF actually determines whether access is
allowed or denied. We then describe how we measure suspi-
cion in order to trigger actions.

5.1 Determining Access
Recall the discussion of real world metaphors in the in-

troduction, where we described the credit rating and GPA
as measures to determine the risk associated with individu-
als. Determining access for a source using our architecture
follows the same concept. Like the credit rating and GPA,
threat levels and thresholds are the measures used to deter-
mine risk in this architecture.

We stated earlier that each node value and service value
has an associated threshold, which states how tolerant the
node or service is to suspicious events. Also, each source
has a threat level which shows how suspicious the source
is. These two measures are meant to be used together to
determine risk, which in turn is used by the AEF to allow
or deny access to the source.

If a source continuously exhibits suspicious behavior, the
AEF would increase its threat level via the actions. As long
as the threat level stays below the node threshold or service
threshold, access would be granted to the source. If the
threat level of the source increases to such an extent that
it meets or exceeds the threshold of the destination node or
service, the AEF would deny the source from accessing the
destination.

In summary, access to a node i and service j from source
k is allowed if and only if the following two equations are
fulfilled:

threatLevel(k) ≤ nodeThreshold(i)
threatLevel(k) ≤ serviceThreshold(i, j)

To get a better idea about how this works, consider the
scenario where a malicious source is trying to access two
nodes: a node H that is more valuable, and another node
L that is less valuable. Since H is more valuable, both its
node threshold and service threshold would be lower than
those of L. Initially, the threat level of the source would be
low, and therefore access to both H and L would be granted
(since the threat level has not exceeded the thresholds yet).
As the threat level grows, it would exceed H’s thresholds
first, since the thresholds are lower than that of L’s. When
this happens, access to H and its services would be denied.

Later, when the threat level increases beyond the thresholds
of L, access to L and its services would be denied too.

So far, we have only looked at the scenario where the
threat level increases. In the real world, traffic from a source
may be legitimate most of the time, and malicious at other
times. Therefore, the threat level has to decrease from time
to time in order to make it realistic. We have already de-
scribed the default decrease action in Section 4.1.6. Using
the default decrease action, we can decrease the threat level
after a certain amount of legitimate connections, as specified
in the static policy.

However, an attacker may attempt to exploit this mech-
anism by introducing a lot of legitimate traffic to hide her
attacks. By doing this stealthily, the attacker can make the
AEF reduce the threat level of its source, while launching at-
tacks stealthily in the background. Since the source’s threat
level is low, access to most nodes would still be granted. To
counter this threat, we use a conservative-decrease aggressive-
increase policy. This means that we would decrease the
threat level by a small conservative amount when legiti-
mate connections are encountered, but at the same time,
we would increase it by a large amount when malicious traf-
fic is present. Using this method, the AEF can frustrate the
attacker who is trying to attack the network stealthily.

By using risk to determine access, we can dynamically
allow or deny access to many sources. This is what we mean
by allowing the “in-betweens” which we mentioned in the
introduction.

5.2 Measuring Suspicion
So far, we have discussed how access is granted or denied

based on the threat levels and thresholds. We will now dis-
cuss the criteria that are used by actions to increase the
threat level of a source. In other words, how do we measure
suspicion?

In the introduction, we used the example of a salesper-
son, where we said that the salesperson’s ability to make
a sale depends on “signs” such as appearance, communica-
tion skills, and dressing. In our architecture, these signs are
represented by the patterns which the actions look for. In
Section 4.1.6, the concept of patterns was left generic. In
order to explain how suspicion is measured, we will now dis-
cuss examples of more specific patterns that are looked for
by actions to adjust the threat level.

Since we are primarily working with the network domain,
we will give examples of patterns that can be found in the
network domain as follows:

• Malformed packets – Illegal TCP flag combinations,
invalid field values, corrupted packets.

• Malicious/abnormal packet content – Buffer overflow
shellcode in the packet payload.

• Anomalous behavior – Unusual behavior from sources
that deviate from the normal profile. For example,
suppose a sales agent who normally uses the system
from 9am to 5pm logs in at 3am one night. This ex-
hibits anomalous behavior.

Apart from these patterns, we can also use active counter-
measures to gauge whether a source is behaving suspiciously.
For example, we can use programs to enable a node to ping
the source of the connection whenever the node receives traf-
fic. If the source of the connection does not respond, there

225

Internet

Firewall
 AEF

web
 webdev
 dns
 mail

management
engineering

Figure 6: The simulated network.

is a slight chance that it is spoofed traffic. Of course, there
may be other reasons too, such as a firewall blocking the
source from receiving ping packets, or the source itself dis-
abling ping packets. When we execute a countermeasure
like this, we have to take these issues into consideration. If
the source of a connection is an internal node, and is known
to block ping packets, then the action may be configured
to disregard the problem that it is not responding. On the
other hand, if it is an external source, we cannot be entirely
sure – therefore, a ping action can be configured to increase
the threat level for this source by just a small value.

6. SIMULATION
A simulation was used to investigate the feasibility of the

architecture. We decided to perform a simulation before de-
veloping an actual implementation of the architecture, since
a simulation would be able to provide us with advance in-
formation on potential design and implementation issues.

We focused on simulating the network of a small organi-
zation, shown in Figure 6. In the diagram, the role of each
node is displayed under the node. The network consists of
a server farm consisting of four servers: a production web
server (web), a development web server (webdev), a DNS
server (dns), and a mail server (mail). We also created two
two fictitious departments in the organization called engi-
neering and management. There are four workstations in
each department. Note that engineering and management
are also the names of the roles for the workstations.

In our discussion in Section 3, we mentioned that all traf-
fic has to pass through the AEF in order to be authorized
for access to the destination nodes (see also Figure 1). In
accordance with this requirement, we designed the simu-
lated network such that all traffic from any node has to pass
through the AEF in order to reach its destination node.

6.1 Dataset
The simulation assumes 10,000 source connections. We

used both internal and external hosts (or sources) in our
simulation. There were 8 internal hosts, where 4 are work-
stations assigned the engineering role, and the other 4 work-

Traffic

Generator

AEF

Core

Event

Analyzer

traffic
 event

log

Traffic

Profiles

Static

Policy

Dynamic

Policy

Graph
results

AEF

Figure 7: The flow of events in the simulation.

stations are assigned the management role. We used 8 ex-
ternal hosts with non-internal IP addresses.

In the simulation, we are trying to assess if the sources
would be granted or denied access by the AEF based on
their risk. Therefore, to make it realistic, we designed the
simulation such that the servers would only receive traffic
and not send out traffic. In other words, the servers act
only as destination nodes and not as source nodes.

We defined 6 actions which look for varying patterns and
have differing threat adjustment values. The minimum threat
level (and also the initial threat level) for each source was
specified to be 0.1. The default decrease action was config-
ured to be triggered after 10 legitimate connections from the
source. Upon its activation, the threat level for the source
would be decreased by 1%.

6.2 Experimental Prototype
An experimental prototype was developed to perform the

simulation. The prototype was built using Perl 5.6 on the
Linux 2.4 platform. There are three components in the pro-
totype: the traffic generator, the Authorization Enforcement
Facility (AEF), and the event analysis component.

The traffic generator reads in information about the source
hosts (both internal and external) and traffic profiles. It
then generates traffic based on these input data. The gener-
ated traffic is later passed to the AEF. The AEF loads the
static policy and parses the traffic sent to it by the traffic
generator. As parsing is done, the dynamic policy is updated
continually to adjust the threat level based on the actions
defined in the static policy. All events triggered by the AEF
are logged into an event log. The event log is then processed
by the event analyzer, which generates graphs based on the
logs. This simulation flow is shown in Figure 7.

6.3 Results
We will now explain the simulation results. We used three

traffic generation profiles in the simulation: normal, suspi-
cious, and highly malicious. The graphs representing the
results for each of these profiles are shown in Figures 8, 9,
and 10 respectively. There are many elements that are rep-
resented in these graphs. The graph shows the threat level of
a source and thresholds of all destination nodes and services.
In order to make things clear, we arrange the thresholds of
destination nodes and services by groups, instead of show-
ing every threshold for every node and service. For example,
suppose a source connects to 5 destination nodes. The first
two nodes share the same threshold of 6, the third has a
threshold of 7, and the last two nodes share a threshold of
8. Instead of showing thresholds for all 5 destination nodes,

226

 0

 2

 4

 6

 8

 10

 12

 0 10000 20000 30000 40000 50000 60000

Le
ve

l

Time

Threat Level - Normal Profile

Threat Level
Threshold 6
Threshold 7
Threshold 8
Threshold 9

Threshold 10
Threshold 11

Figure 8: Normal profile.

we just show thresholds 6, 7, and 8 to represent them.
When access is denied to a source for nodes and ser-

vices with a certain threshold, we represent it in the graph
by showing that the node or service threshold as having
dropped to a level of 0.5. If access is granted again, the
threshold is increased to its original level.

It should be noted once again that a node or service with
a high value would have a low threshold. In our simulations,
the thresholds range from 6 to 11. This implies that nodes
and services represented by threshold 6 have the highest
value, while nodes and services at threshold 11 have the
lowest value. In each graph, the solid line represents the
threat level, while dotted lines show the various thresholds.

We will first examine the results for the normal traffic
generation profile (Figure 8). The solid line is the threat
level of the source. As it increases, access is still granted
to all nodes and services of all thresholds, until it reaches a
level of 6 and above. At this point, the AEF denies access
for the source to nodes and services with a threshold of 6.
This is shown by the drop of the Threshold 6 line to 0.5.
As a result of the default decrease action, the threat level
temporarily decreases to a value below 6. This allows desti-
nations with Threshold 6 to be accessed again – hence, we
see the Threshold 6 line resuming its original level of 6. The
threat level increases again, and Threshold 6 drops yet once
more. All this while, the threat level never increases to 7
and beyond. Therefore, destinations with thresholds 7 to 11
are always accessible by the source. Since the destinations
with Threshold 6 are of the highest value, it is expected that
access to these destinations would be denied even when the
threat level is still relatively low.

The next graph in Figure 9 shows the suspicious profile.
Like before, as the threat level increases, the access to des-
tinations with thresholds are denied. This time, destina-
tions with thresholds 6 to 9 are gradually denied access as
the threat level of the source increases. Destinations with
thresholds 10 to 12 (the destinations with the lowest values)
are still accessible.

Lastly, the graph in Figure 10 represents the highly ma-
licious profile. In this graph, the threat level increases very
aggressively, due to the source introducing a lot of malicious
traffic. This behavior triggers many actions, which in turn
increases the threat level. As a result of this, all destinations
are denied access gradually as their thresholds are exceeded.

There is one issue that needs to be pointed out with regard

 0

 2

 4

 6

 8

 10

 12

 0 10000 20000 30000 40000 50000 60000

Le
ve

l

Time

Threat Level - Suspicious Profile

Threat Level
Threshold 6
Threshold 7
Threshold 8
Threshold 9

Threshold 10
Threshold 11

Figure 9: Suspicious profile.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10000 20000 30000 40000 50000 60000

Le
ve

l

Time

Threat Level - Highly Malicious Profile

Threat Level
Threshold 6
Threshold 7
Threshold 8
Threshold 9

Threshold 10
Threshold 11

Figure 10: Highly malicious profile.

to the threat level and the threshold lines in the graphs. In
a few cases, such as the Threshold 11 line in Figure 10, it
looks as though access is still granted to the destinations
even when the threat level has exceeded a level of 11. The
reason why this happens is because at this point, the source
has not connected to the destinations with a threshold of 11
yet – it was connecting to other destinations. However, once
the source attempts to connect to a destination of threshold
11, it was denied immediately. This is shown by the drop in
the Threshold 11 line at around time unit 48,000.

The results can be summarized as follows. As noted ear-
lier, the more valuable a node or service is, the lower its
threshold (the lower its tolerance to suspicious events). As
the threat level increases, the access to the more valuable
nodes and services will be denied to the source first. This is
followed by the denial of access to less valuable nodes and
services. This demonstrates that our dynamic access control
scheme can determine whether access to nodes and services
should be allowed or denied by taking risk as the input.

7. DISCUSSION
So far, we have demonstrated the feasibility of the archi-

tecture using a simulation. In order for the architecture to
be deployed into a real network environment, however, a few
issues still need to be resolved. These issues are discussed
in this section.

For further testing and evaluation of the architecture, we

227

need to develop or use a traffic generator that performs re-
alistic traffic generation. The tool needs to be highly cus-
tomizable to allow fine-grained control over how traffic is
generated. This would allow us to test various types of traf-
fic patterns and how actions respond to them.

In this paper, we have described policy enforcement as a
process, where we discussed how the AEF determines ac-
cess and measures suspicion. In the future, we would also
describe policy enforcement from a more general, architec-
tural view. The approach we are investigating would divide
policy enforcement into three components: policy parser,
policy decision, and policy management. The policy parser
component would preprocess the policy specification and ex-
tract parameters for policy decision and management. Our
overall policy specification schema may need to be improved
and extended to accommodate future requirements.

One potential concern with the AEF architecture is that
it may be a bottleneck. While this may seem to be the case
at first glance, it can be noted that the AEF is similar to
a firewall that is positioned between the Internet and the
organizational network. Since modern day firewalls carry
out fairly complex and highly advanced tasks, we believe
the AEF should also be able to perform the same level of
functionality without becoming a bottleneck. Furthermore,
there are commercial products like ForeScout ActiveScout
[2] that are installed between the firewall and the Internet,
but are not seen as bottlenecks. Having said that, it is possi-
ble that the AEF may encounter performance issues during
future development. Should this happen, two approaches
that would be worth exploring are the development of effi-
cient algorithms for the AEF, as well as the implementation
of the AEF in hardware for high-speed performance.

We need to be wary about attacks against the architec-
ture itself. As a finite state machine, the AEF may be sus-
ceptible to certain issues that affect finite state machines.
At this point, we have identified two broad types of attacks
that may potentially be used to attack the architecture. The
first type of attack is where an attacker attempts to launch
a denial-of-service attack against the AEF by introducing a
lot of malicious traffic from spoofed source addresses. This
would increase the threat levels of the real sources and even-
tually these sources would not be able to access the network.
We believe that this problem can be solved, especially when
the AEF is used in conjunction with other network security
technologies. Another countermeasure is to improve the al-
gorithms used by the AEF to include more advanced meth-
ods to detect and reduce this threat. For example, the AEF
can be designed to immediately drop network packets that
are known to be spoofed. This is similar to how firewalls
with stateful packet inspection handle spoofed packets. In
the AEF, we could drop such packets without increasing the
threat level of that source, thus mitigating this threat. We
believe that a practical solution lies somewhere in between
these two approaches, and we are looking carefully into the
issue.

The second type of attack is where an attacker intro-
duces legitimate traffic as noise to hide stealthy malicious
attacks. We have suggested one mechanism to counter this
threat of stealthy attacks, which is the conservative-decrease
aggressive-increase policy discussed in Section 5. However,
more sophisticated attacks from this category may require
more advanced defense scheme. As such attacks also affect
other finite state machines apart from the AEF, the study

of countermeasures against them may present itself as an
interesting research problem for future study. At present,
we are in the process of conducting further simulations of
the AEF in order to develop better algorithms to counter
this type of attack.

Communication between the AEF and the nodes is an is-
sue too. In order to carry out actions, an application-level
communication protocol needs to be designed and used be-
tween the AEF and the nodes. There is the issue of clock
skew, which may affect certain countermeasures and actions.
This can be addressed by using time synchronization pro-
tocols like the Network Time Protocol (NTP) [8]. Another
issue is the security of messages that are exchanged using
this protocol. To achieve confidentiality and preserve in-
tegrity in these AEF-node communications, we would need
to use cryptographic techniques to secure the messages.

Lastly, there is the issue of role hierarchy. In our present
architecture, no role hierarchy is assumed. However, an ac-
tual network in an organization may benefit from role hier-
archy. For example, a department may require all its web-
servers to have certain services and service values, while a
smaller unit within that department may have their own
webserver which would need to inherit those services. Since
we are using roles to represent values as opposed to permis-
sions in regular RBAC, a few ways of allowing role hierarchy
need to be considered.

8. ONGOING AND FUTURE WORK
Based on the issues from our discussion in Section 7, we

are currently carrying out the deployment of the architec-
ture into a network environment. Although we are extend-
ing the ideas described in this paper into an actual network
environment, we also envision a few other areas where the
architecture can be used. In this section, we discuss our cur-
rent progress as well as a few ideas on how this architecture
can be applied.

One point we mentioned earlier in the paper is that the
AEF complements firewalls and IDSs. We are presently
working on a few approaches that can be used to perform
true integration of the architecture into firewalls and IDSs.
An interesting property of this architecture is that it can be
integrated with firewalls and IDSs using a few techniques.
We see three key approaches that can potentially be used.
First, the AEF functionality can be integrated into a fire-
wall itself, thus transforming a packet-filtering firewall into a
dynamic firewall that allows or denies packets based on intel-
ligent decisions using risk. Another approach is to integrate
it with an IDS, whereby the IDS would use the feedback
provided by the AEF to update its signatures. The third
approach is to introduce the AEF as a separate entity alto-
gether. Each of these approaches have their advantages and
disadvantages. Inclusion of the technology into firewalls and
IDSs would require an organization’s existing technology to
be changed. Using the AEF as a separate component may
avoid the need for this, but would require a deployment of
an additional device in the network.

So far, we have determined risk using threat levels and
thresholds, which are tightly related to the network layer.
Using input from the environment may give us interesting
ways of determining risk. For example, if we know that a
certain environment, say a department, has certain machines
with special properties, we can use this knowledge to develop
an environment profile which can be used as an input to

228

determine risk more intelligently. Likewise, we can define
certain features in roles that can be used as input at a higher
level of abstraction, using a role profile.

The architecture uses the threat level measure extensively.
The threat level can result from different combinations of
threat levels, increments (or decrements), and actions. There
may be a concern about whether all combinations that result
from one threat level actually represent the same amount of
risk or not. More simulations need to be performed to obtain
the optimal values and measures to represent the risks.

8.1 Specific Actions
Up to this point, the actions have been described in a

rather generic manner. Actual deployment in a network
environment would require more specific methods to define
patterns, perform pattern matching, and execute counter-
measures. We will now discuss a few specific examples of
actions and countermeasure strategies that we are presently
considering. Please note that these approaches may require
software agents to be running on the destination nodes.
These agents would communicate with the AEF to enable
it to carry out the actions.

One action that may be worth pursuing would be to ob-
tain the passive fingerprint [12] of the operating system of
the source. Based on this OS fingerprint, we can exam-
ine future incoming packets from the same source to see
whether they fit the criteria of packets for that operating
system or not. If they do not match the criteria, something
suspicious may be happening. OS fingerprints can also be
used to identify network scans that originate from certain
scanning programs which are known to be only available
on certain platforms. Of course, there are issues with this,
such as sources with customized operating system kernels
that have been patched to announce false OS fingerprints,
and sources with multiple operating systems installed. We
cannot be sure whether the fingerprint is correct or not. At
the same time, these fingerprints may be useful to detect
attacks and hence we should not dismiss them totally. In-
formation like the OS fingerprint is especially appropriate
for the AEF architecture, which, as we mentioned earlier in
the paper, allows “in-betweens.”

The AEF can also potentially make more intelligent de-
cisions if information from servers in an internal network is
available. Let us say that we have access to the internal
network’s DNS server. Suppose Node A accessed Node B

(a webserver) on the HTTP port for the first time. If DNS
records do not show that Node A accessed the DNS server
to obtain Node B’s numeric IP address, there may be rea-
son to believe that this connection is suspicious. The reason
is, most of the time, a user would enter the host name of
the webserver in the web browser in order to access its web
pages. This requires the DNS server to be queried in order to
resolve the host name to its numeric equivalent, especially
if the webserver is queried for the first time. An Internet
worm, on the other hand, would normally access numeric
IP addresses directly without querying the DNS server.

Another action is to use high-level heuristic rules to de-
termine if a network connection is normal or not. We can
examine whether a typical connection is conforming to In-
ternet standards and rules. For example, is the source port
incrementing for every new connection that a source is ini-
tiating? Does the connection look like a port scan? Has the
same TCP sequence number appeared recently?

We can also consider the bandwidth that is being con-
sumed by the source and match it with the type of traffic
that is expected by the source. For example, we do not ex-
pect high bandwidth utilization for normal web traffic com-
pared to applications like video streaming. If normal traffic
such as web traffic uses bandwidth utilization that is equiv-
alent to that of multimedia streaming in a short period of
time, something may be wrong.

Other factors that we are considering for use as actions
include the use of IDS signatures, investigation of user be-
havior (especially on an internal network), logging incoming
and outgoing data per node, and basic countermeasures to
gain intelligence from the source. From the examples of
actions that we have seen so far, one observation can be
noticed: the AEF architecture makes it easy for new forms
of actions to be used. If we require new types of counter-
measures in the future, action modules can be developed for
them and these modules can be “plugged” into the architec-
ture. We are currently creating and designing more actions
and plan to carry out further experiments and simulations
using these actions soon.

8.2 Other Potential Applications
Although the architecture presented is specific to the net-

work domain, it can be applied to other areas as well. One
such area is load balancing. Suppose we have a pool of
web servers, with different degrees of load at different times.
If we have an AEF-like component in the network, a new
HTTP connection can be directed to the appropriate web
server based on certain criteria, such as where the source
connection is from and the amount of load in the current
web servers.

Yet another area where this architecture can be applied is
in the area of reputation-based systems. In an example of a
reputation-based system, a node would assign a reputation
to neighboring nodes, and decide whether to send data based
on the neighboring node’s current reputation. Our notions
of threat levels and thresholds can potentially be used to
support such systems.

Since the earliest work in information security, it has been
recognized that the greatest threat is from insiders. In par-
ticular, defending against an insider who attempts to abuse
his computer privileges is significant to the security of the
nation’s critical infrastructures. Despite the fact that poten-
tially catastrophic consequences of insider threat continues
to be confirmed by security breaches in the real world, nu-
merous issues on how to combat these threats are yet to be
fully addressed by the research community [1, 17]. We be-
lieve that the AEF can help with the design of a practical
and effective insider threat mitigation system.

To see how it might work, recall that access to the servers
on an internal network can provide intelligence for the AEF
to make better decisions. This would provide the AEF with
the capability to function as an insider threat mitigation sys-
tem. As an example, if we have an internal network where all
communications are analyzed by the AEF, we would be able
to detect the abuse of certain resources by employees. To be
more specific, consider the case where the employee might
try to access an unauthorized webserver containing sensitive
information. The AEF could be configured to automatically
block future similar attempts to nullify or minimize the im-
pact of the abuse.

229

9. CONCLUSION
We have described a new approach to secure networks

in the form of a dynamic access control architecture. This
architecture uses risk as a way to determine threats in a net-
work environment. We view it as a complementary technol-
ogy to firewalls and IDSs. Our simulation results show that
it is feasible, and we are currently working on developing and
deploying the architecture in a real network environment.

Acknowledgments
We would like to thank the anonymous reviewers of this
paper for their helpful comments and suggestions.

10. REFERENCES
[1] M. D. Abrams, J. Heaney, O. King, L. J. LaPadula,

M. Lazear, and I. M. Olson. Generalized framework
for access control: Towards prototyping the ORGCON
policy. In Proceedings of the 14th National Computer
Security Conference, Washington, D.C., October 1991.

[2] ForeScout. ActiveScout. World Wide Web, 2002.
http://www.forescout.com/activescout.html.

[3] L. Harn and H. Lin. Integration of user authentication
and access control. In IEE Proceedings-E, volume 139,
number 2, pages 139–143, 1992.

[4] Internet Assigned Numbers Authority. Port numbers.
World Wide Web.
http://www.iana.org/assignments/port-numbers.

[5] T. Jaeger. On the increasing importance of
constraints. In Proceedings of the 4th ACM Workshop
on Role-Based Access Control, pages 33–42, Fairfax,
VA, October 1999.

[6] K. Knorr. Dynamic access control through petri net
workflows. In Proceedings of the 16th Annual
Computer Security Applications Conference (ACSAC),
New Orleans, LA, December 2000.

[7] C. H. Lin, R. C. T. Lee, and C. C. Chang. A dynamic
access control mechanism in information protection
systems. Journal of Information Science and
Engineering, 6(1):25–35, March 1990.

[8] D. L. Mills. Network Time Protocol (version 3)
specification, implementation and analysis. RFC 1305,
March 1992.

[9] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. The spread of the
Sapphire/Slammer worm. Technical report, January
2003.
http://www.caida.org/outreach/papers/2003/sapphire/
sapphire.html.

[10] P. Naldurg and R. H. Campbell. Dynamic access
control policies in Seraphim. Technical Report
UIUCDCS-R-2002-2260, Computer Science
Department, University of Illinois at
Urbana-Champaign, February 2002.

[11] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, February 1996.

[12] L. Spitzner. Know your enemy: Passive fingerprinting.
World Wide Web, March 2002.
http://project.honeynet.org/papers/finger/.

[13] S. Staniford, V. Paxson, and N. Weaver. How to 0wn
the Internet in your spare time. In Proceedings of the

11th USENIX Security Symposium (Security ’02), San
Francisco, CA, August 2002.

[14] R. K. Thomas and R. S. Sandhu. Towards a
task-based paradigm for flexible and adaptable access
control in distributed applications. In Proceedings on
the 1992-1993 Workshop on New Security Paradigms,
pages 138–142, Little Compton, RI, 1993.

[15] R. K. Thomas and R. S. Sandhu. Conceptual
foundations for a model of task-based authorizations.
In Proceedings of the 7th IEEE Computer Security
Foundations Workshop, pages 66–79, Franconia, NH,
June 1994.

[16] R. K. Thomas and R. S. Sandhu. Task-based
authorization controls (TBAC): A family of models for
active and enterprise-oriented authorization
management. In Proceedings of the IFIP WG11.3
Workshop on Database Security, Lake Tahoe, CA,
August 1997.

[17] D. Verton. Insider threat to security may be harder to
detect, experts say. Computerworld, April 12, 2002.

[18] S.-M. Yen and C.-S. Laih. On the design of dynamic
access control scheme with user authentication.
International Journal of Computers and Mathematics
with Applications, 25(7):27–32, 1993.

230

