
E

Y
a

b

c

a

A
R
R
2
A
A

K
S
C
I
P
A

1

i
i
e
w
s
t
k
p
l

a
s
a
a
r
m

U

g

0
d

The Journal of Systems and Software 85 (2012) 1083– 1095

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

fficient audit service outsourcing for data integrity in clouds

an Zhua,b,∗, Hongxin Huc, Gail-Joon Ahnc, Stephen S. Yauc

Institute of Computer Science and Technology, Peking University, Beijing 100871, China
Beijing Key Laboratory of Internet Security Technology, Peking University, Beijing 100871, China
School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, ZA 85281, USA

 r t i c l e i n f o

rticle history:
eceived 31 March 2011
eceived in revised form
1 September 2011
ccepted 10 December 2011
vailable online 19 December 2011

eywords:
ecurity
loud storage

a b s t r a c t

Cloud-based outsourced storage relieves the client’s burden for storage management and maintenance by
providing a comparably low-cost, scalable, location-independent platform. However, the fact that clients
no longer have physical possession of data indicates that they are facing a potentially formidable risk for
missing or corrupted data. To avoid the security risks, audit services are critical to ensure the integrity
and availability of outsourced data and to achieve digital forensics and credibility on cloud computing.
Provable data possession (PDP), which is a cryptographic technique for verifying the integrity of data
without retrieving it at an untrusted server, can be used to realize audit services.

In this paper, profiting from the interactive zero-knowledge proof system, we address the construction
of an interactive PDP protocol to prevent the fraudulence of prover (soundness property) and the leakage
nteractive proof system
rovable data possession
udit service

of verified data (zero-knowledge property). We prove that our construction holds these properties based
on the computation Diffie–Hellman assumption and the rewindable black-box knowledge extractor. We
also propose an efficient mechanism with respect to probabilistic queries and periodic verification to
reduce the audit costs per verification and implement abnormal detection timely. In addition, we present
an efficient method for selecting an optimal parameter value to minimize computational overheads of
cloud audit services. Our experimental results demonstrate the effectiveness of our approach.
. Introduction

In recent years, the emerging cloud-computing paradigm
s rapidly gaining momentum as an alternative to traditional
nformation technology. Cloud computing provides a scalability
nvironment for growing amounts of data and processes that
ork on various applications and services by means of on-demand

elf-services. One fundamental aspect of this paradigm shifting is
hat data are being centralized and outsourced into clouds. This
ind of outsourced storage services in clouds have become a new
rofit growth point by providing a comparably low-cost, scalable,

ocation-independent platform for managing clients’ data.
The cloud storage service (CSS) relieves the burden of stor-

ge management and maintenance. However, if such an important
ervice is vulnerable to attacks or failures, it would bring irretriev-
ble losses to users since their data or archives are stored into

n uncertain storage pool outside the enterprises. These security
isks come from the following reasons: the cloud infrastructures are
uch more powerful and reliable than personal computing devices.

∗ Corresponding author at: Institute of Computer Science and Technology, Peking
niversity, Beijing 100871, China. Tel.: +86 13121328791; fax: +86 10 82529207.

E-mail addresses: yan.zhu@pku.edu.cn (Y. Zhu), hxhu@asu.edu (H. Hu),
ahn@asu.edu (G.-J. Ahn), yau@asu.edu (S.S. Yau).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.12.024
© 2011 Elsevier Inc. All rights reserved.

However, they are still susceptible to security threats both from
outside and inside the cloud (Armbrust et al., 2010); for the benefits
of their possession, there exist various motivations for cloud ser-
vice providers (CSP) to behave unfaithfully toward the cloud users
(Tchifilionova, 2011); furthermore, the dispute occasionally suffers
from the lack of trust on CSP. Consequently, their behaviors may not
be known by the cloud users, even if this dispute may result from
the users’ own improper operations (Ko et al., 2011). Therefore, it is
necessary for cloud service providers to offer an efficient audit ser-
vice to check the integrity and availability of the stored data (Yavuz
and Ning, 2009).

Traditional cryptographic technologies for data integrity and
availability, based on hash functions and signature schemes (Hsiao
et al., 2009; Yumerefendi and Chase, 2007), cannot work on the
outsourced data without a local copy of data. In addition, it is not
a practical solution for data validation by downloading them due
to the expensive transaction, especially for large-size files. More-
over, the solutions to audit the correctness of the data in a cloud
environment can be formidable and expensive for the cloud users
(Armbrust et al., 2010). Therefore, it is crucial to realize public
auditability for CSS, so that data owners may resort to a third party

auditor (TPA), who has expertise and capabilities that a common
user does not have, for periodically auditing the outsourced data.
This audit service is significantly important for digital forensics and
data assurance in clouds.

dx.doi.org/10.1016/j.jss.2011.12.024
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:yan.zhu@pku.edu.cn
mailto:hxhu@asu.edu
mailto:gahn@asu.edu
mailto:yau@asu.edu
dx.doi.org/10.1016/j.jss.2011.12.024

1 ms an

a
(
T
s
d
d
a
p
p
m
a
c

o
t
a
f
t
a
e
s

i
c
a
N
a
a
c

o
m

•

•

•

S
s
t

1

d
a
v
c
c
a
s

•

•

Clo
084 Y. Zhu et al. / The Journal of Syste

To implement public auditability, the notions of proof of retriev-
bility (POR) (Juels, 2007) and provable data possession (PDP)
Ateniese et al., 2007) have been proposed by some researchers.
heir approach was based on a probabilistic proof technique for a
torage provider to prove that clients’ data remain intact without
ownloading the stored data, which is called “verification without
ownloading”. For ease of use, some POR/PDP schemes work on

 publicly verifiable way, so that anyone can use the verification
rotocol to prove the availability of the stored data. Hence, this
rovides us an effective approach to accommodate the require-
ents from public auditability. POR/PDP schemes evolved around

n untrusted storage offer a publicly accessible remote interface to
heck the tremendous amount of data.

Although PDP/POR schemes evolved around untrusted storage
ffer a publicly accessible remote interface to check and manage
remendous amount of data, most of existing schemes cannot give

 strict security proof against the untrusted CSP’s deception and
orgery, as well as information leakage of verified data in verifica-
ion process. These drawbacks greatly affect the impact of cloud
udit services. Thus, new frameworks or models are desirable to
nable the security of public verification protocol in cloud audit
ervices.

Another major concern addressed by this paper is how to
mprove the performance of audit services. The audit performance
oncerns not only the costs of computation, communication, stor-
ge for audit activities but also the scheduling of audit activities.
o doubt improper scheduling, more or less frequent, causes poor
udit performance, but an efficient scheduling can help provide

 better quality of and a more cost-effective service. Hence, it is
ritical to investigate an efficient schedule for cloud audit services.

In response to practical requirements for outsourced storages,
ur concerns to improve the performance of audit services are
ainly from three aspects:

How to design an efficient architecture of audit system to reduce
the storage and network overheads and enhance the security of
audit activities;
How to provide an efficient audit scheduling to help provide a
more cost-effective audit service;
How to optimize parameters of audit systems to minimize the
computation overheads of audit services.

olving these problems will help to improve the quality of audit
ervices, which can not only timely detect abnormality, but also
ake up less resources, or rationally allocate resources.

.1. Contributions

In this paper, we focus on efficient audit services for outsourced
ata in clouds, as well as the optimization for high-performance
udit schedule. First of all, we propose an architecture of audit ser-
ice outsourcing for verifying the integrity of outsourced storage in
louds. This architecture based on cryptographic verification proto-
ol does not need to trust in storage server providers. Based on this
rchitecture, we have made several contributions to cloud audit
ervices as follows:

We provide an efficient and secure cryptographic interactive
audit scheme for public auditability. We prove that this scheme
retains the soundness property and zero-knowledge property
of proof systems. These two properties ensure that our scheme
can not only prevent the deception and forgery of cloud storage

providers, but also prevent the leakage of outsourced data in the
process of verification.
We propose an efficient approach based on probabilistic queries
and periodic verification for improving performance of audit
d Software 85 (2012) 1083– 1095

services. To detect abnormal situations timely, we adopt a way of
sampling verification at appropriate planned intervals.
• We presented an optimization algorithm for selecting the ker-

nel parameters by minimizing computation overheads of audit
services. Given the detection probability and the probability of
sector corruption, the number of sectors has an optimal value to
reduce the extra storage for verification tags, and to minimize the
computation costs of CSPs and clients’ operations.

In practical applications, above conclusions will play a key role
in obtaining a more efficient audit schedule. Further, our optimiza-
tion algorithm also supports an adaptive parameter selection for
different sizes of files (or clusters), which could ensure that the
extra storage is optimal for the verification process.

Finally, we implement a prototype of an audit system to evaluate
our proposed approach. Our experimental results not only validate
the effectiveness of above-mentioned approaches and algorithms,
but also show our system has a lower computation cost, as well as
a shorter extra storage for verification. We list the features of our
PDP scheme in Table 1. We also include a comparison of related
techniques, such as, PDP (Ateniese et al., 2007), DPDP (Erway
et al., 2009), and CPOR (Shacham and Waters, 2008). Although the
computation and communication overheads of O(t) and O(1) in
PDP/SPDP schemes are lower than those of O(t + s) and O(s) in our
scheme, our scheme has less complexity due to the introduction
of a fragment structure, in which an outsourced file is split into n
blocks and each block is also split into s sectors. This means that the
number of blocks in PDP/SPDP schemes is s times more than that in
our scheme and the number of sampling blocks t in our scheme is
merely 1/s times more than that in PDP/SPDP schemes. Moreover,
the probability of detection in our scheme is much greater than
that in PDP/SPDP schemes because of 1 − (1 − �b)ts ≥ 1 − (1 − �b)t.
In addition, our scheme, similar to PDP and CPOR schemes, pro-
vides the ownership proof of outsourced data as a result that it is
constructed on the public-key authentication technology, but SPDP
and DPDP schemes cannot provide such a feature because they are
only based on the Hash function.

1.2. Organization

This paper is organized as follows: in Section 2, we describe
an audit architecture and security requirements of cloud audit
systems. Section 3 introduces our audit scheme and analyzes the
security of our scheme. In Section 4, we analyze the audit per-
formance based on probabilistic queries and periodic verification.
Section 5 gives an optimization algorithm of tag storage and verifi-
cation protocol. Our implementation and experimental results are
described in Section 6. Section 7 overviews the related work and
we conclude this paper in Section 8.

2. Audit system architecture

In this section, we first introduce an audit system architecture
for outsourced data in clouds in Fig. 1, which can work in an audit
service outsourcing mode. In this architecture, we consider a data
storage service containing four entities:

Data owner (DO): who has a large amount of data to be
stored in the cloud;

ud service provider (CSP): who provides data storage service and
has enough storage spaces and compu-

tation resources;

Third party auditor (TPA): who has capabilities to manage or
monitor outsourced data under the del-
egation of data owner; and

Y. Zhu et al. / The Journal of Systems and Software 85 (2012) 1083– 1095 1085

Table 1
Comparison of POR/PDP schemes for a file consisting of n blocks.

Scheme CSP computation Client computation Communication Fragment
structure

Privacy Ownership
proof

Prob. of detection

PDP (Ateniese et al., 2007) O(t) O(t) O(1)
√ √

1 − (1 − �b)t

SPDP (Ateniese et al., 2008) O(t) O(t) O(t)
√

1 − (1 − �b)t

DPDP-I (Erway et al., 2009) O(t log n) O(t log n) O(t log n) 1 − (1 − �b)t

DPDP-II (Erway et al., 2009) O(t log n) O(t log n) O(t log n) 1 − (1 − �b)˝(n)

CPOR-I (Shacham and Waters, 2008) O(t) O(t) O(1)
√ √

1 − (1 − �b)t

CPOR-II (Shacham and Waters, 2008) O(t + s) O(t + s) O(s)
√ √

1 − (1 − �)t·s

Our scheme O(t + s) O(t + s) O(s)
√ √ √

1 − (1 − �)t·s

N and �

G

T
s

•

•

t
h
c
t
a
a
o
(
d
n
a

ote that s is the number of sectors in each block, t is the number of sampling blocks,

ranted applications (GA): who have the right to access and manip-
ulate stored data. These applications can
be either inside clouds or outside clouds
according to the specific requirements.

Next, we describe a flowchart for audit service based on TPA.
his also provides a background for the description of our audit
ervice outsourcing as follows:

First, the client (data owner) uses the secret key sk to pre-
processes the file, which consists of a collection of n blocks,
generates a set of public verification information that is stored
in TPA, transmits the file and some verification tags to CSP, and
may delete its local copy;
At a later time, using a protocol of proof of retrievability, TPA (as
an audit agent of clients) issues a challenge to audit (or check) the
integrity and availability of the outsourced data in terms of the
public verification information. It is necessary to give an alarm
for abnormal events.

This architecture is known as the audit service outsourcing due
o data integrity verification can be implemented by TPA without
elp of data owner. In this architecture, the data owner and granted
lients need to dynamically interact with CSP to access or update
heir data for various application purposes. However, we neither
ssume that CSP is trust to guarantee the security of stored data, nor
ssume that the data owner has the ability to collect the evidences
f CSP’s fault after errors occur. Hence, TPA, as a trust third party
TTP), is used to ensure the storage security of their outsourced

ata. We assume the TPA is reliable and independent, and thus has
o incentive to collude with either the CSP or the clients during the
uditing process:

Fig. 1. Audit system architecture for cloud computing.
b , � are the probability of block and sector corruption in a cloud server, respectively.

• TPA should be able to make regular checks on the integrity and
availability of these delegated data at appropriate intervals;
• TPA should be able to take the evidences for the disputes about

the inconsistency of data in terms of authentic records for all data
operations.

In this audit architecture, our core idea is to maintain the secu-
rity of TPA to guarantee the credibility of cloud storages. This is
because it is more easy and feasible to ensure the security of one
TTP than to maintain the credibility of the whole cloud. Hence, the
TPA could be considered as the root of trust in clouds.

To enable privacy-preserving public auditing for cloud data stor-
age under this architecture, our protocol design should achieve
following security and performance guarantees:

Audit-without-downloading: to allow TPA (or other clients with
the help of TPA) to verify the correct-
ness of cloud data on demand without
retrieving a copy of whole data or
introducing additional on-line burden
to the cloud users;

Verification-correctness: to ensure there exists no cheating CSP
that can pass the audit from TPA with-
out indeed storing users’ data intact;

Privacy-preserving: to ensure that there exists no way
for TPA to derive users’ data from
the information collected during the
auditing process; and

High-performance: to allow TPA to perform auditing with
minimum overheads in storage, com-
munication and computation, and to
support statistical audit sampling and
optimized audit schedule with a long
enough period of time.

To support this architecture, a cloud storage provider only needs
to add a corresponding algorithm module to implement this audit
service. Since the audit process could be considered as an interac-
tive protocol implementation between TPA and this module, such
a module is usually designed as a server daemon to respond audit
requests of TPA through cloud interfaces. This daemon is just a sim-
ple lightweight service due to the reason that it does not need to
transfer the verified data to the TPA (audit-without-downloading
property). Hence, this daemon can be easily appended into various
cloud computing environments.

3. Construction of interactive audit scheme
In this section, we propose a cryptographic interactive audit
scheme (also called as interactive PDP, IPDP) to support our audit
system in clouds. This scheme is constructed on the standard model
of interactive proof system, which can ensure the confidentiality of

1 ms and Software 85 (2012) 1083– 1095

s
i

3

1
b

P

w
b
B

D
c
b

B
e
b
e
e
o

D
t
a

3

i

D
c
(

P

d

e
a
c
o
c

086 Y. Zhu et al. / The Journal of Syste

ecret data (zero-knowledge property) and the undeceivability of
nvalid tags (soundness property).

.1. Notations and preliminaries

Let H = {Hk} be a keyed hash family of functions Hk : {0, 1}*→ {0,
}n indexed by k ∈ K. We say that algorithm A has advantage � in
reaking the collision-resistance of H if

r[A(k) = (m0, m1) : m0 /= m1, Hk(m0) = Hk(m1)] ≥ �,

here the probability is over random choice of k ∈ K and random
its of A. This hash function can be obtained from hash function of
LS signatures (Boneh et al., 2004).

efinition 1 (Collision-resistant hash). A hash family H is (t, �)-
ollision-resistant if no t-time adversary has advantage at least � in
reaking the collision-resistance of H.

We set up our systems using bilinear pairings proposed by
oneh and Franklin (2001). Let G be two multiplicative groups using
lliptic curve conventions with large prime order p. The function e
e a computable bilinear map e : G × G → GT with following prop-
rties: for any G, H ∈ G and all a, b ∈ Zp, we have (1) Bilinearity:
([a]G, [b]H) = e(G, H)ab. (2) Non-degeneracy: e(G, H) /= 1 unless G
r H = 1. (3) Computability: e(G, H) is efficiently computable.

efinition 2 (Bilinear map group system). A bilinear map group sys-
em is a tuple S = 〈p, G, GT , e〉 composed of the objects as described
bove.

.2. Definition of interactive audit

We present a definition of interactive audit protocol based on
nteractive proof systems as follows:

efinition 3. A cryptographic interactive audit scheme S is a
ollection of two algorithms and an interactive proof system, S =
K, T, P):

KeyGen(1s): takes a security parameter s as input, and returns
a public-secret keypair (pk, sk);

TagGen(sk, F): takes as inputs the secret key sk and a file F, and
returns the triples (�, , �), where � denotes the
secret used to generate verification tags, is the
set of public verification parameters u and index
information �, i.e., = (u, �); � denotes the set of
verification tags;

roof (CSP, TPA): is a public two-party proof protocol of retrievabil-
ity between CSP (prover) and TPA (verifier), that is
〈CSP(F, �), TPA〉(pk,), where CSP takes as input a
file F and a set of tags �, and a public key pk and a
set of public parameters are the common input
between CSP and TPA. At the end of the protocol
run, TPA returns {0|1}, where 1 means the file is
correct stored on the server.

where, P(x) denotes the subject P holds the secret x and 〈P, V〉(x)
enotes both parties P and V share a common data x in a protocol.

This is a more generalized model than existing verification mod-
ls for outsourced data. Since the verification process is considered

s an interactive protocol, this definition does not limit to the spe-
ific steps of verification, including scale, sequence, and the number
f moves in protocol, so it can provide greater convenience for the
onstruction of protocol.
Fig. 2. Proposed interactive audit protocol.

3.3. Proposed construction

We present our construction of audit scheme in Fig. 2. This
scheme involves three algorithms: key generation, tag generation,
and verification protocol. In the key generation algorithm, each

client is assigned a secret key sk, which can be used to generate
the tags of many files, and a public key pk, which be used to verify
the integrity of stored files.

ms and Software 85 (2012) 1083– 1095 1087

p
�
b
u
i
p
i
d
i
i
e
a
a

t
F
1
e
o
c
i

t
m
t

3

p
p
k

3

Q
l

�

v

3

v
n
a

P

w
i

'
1(,)C H

{(,)}iQ i v

(',)

(,)F

(pk,). This equation implies that, for all � ∈ TagGen(sk, F), the
ensembles S*(pk,) and 〈CSP(F, �), TPA*〉(pk,) are computationally
Y. Zhu et al. / The Journal of Syste

In tag generation algorithm, each processed file F will produce a
ublic verification parameter = (u, �), where u = (�(1), u1, . . ., us),

 = {�i}i∈[1,n] is a hash index table. The hash value �(1) = H�(“ Fn ”) can
e considered as the signature of the secret �1, . . ., �s and u1, . . .,
s denotes the “encryption” of these secrets. The structure of hash

ndex table should be designed according to applications. For exam-
le, for a static, archival file, we can define briefly �i = Bi, where Bi

s the sequence number of block; for a dynamic file, we can also
efine �i = (Bi||Vi||Ri), where Bi is the sequence number of block, Ri

s the version number of updates for this block, and Ri is a random
nteger to avoid collision. The index table � is very important to
nsure the security of files. According to � and �(1), we can gener-
te the hash value �(2)

i
= H�(1) (�i) for each block. Note that, it must

ssure that the ’s are different for all processed files.
In our construction, the verification protocol has a 3-move struc-

ure: commitment, challenge and response, which is showed in
ig. 3. This protocol is similar to Schnorr’s 	 protocol (Schnorr,
991), which is a zero-knowledge proof system. Using this prop-
rty, we ensure the verification process does not reveal anything
ther than the veracity of the statement of data integrity in a private
loud. In order to prevent the leakage of data and tags in the ver-
fication process, the secret data {mi,j} are protected by a random
j ∈ Zp and the tags {�i} are randomized by a � ∈ Zp. Furthermore,
he values {
j} and � are protected by the simple commitment

ethods, i.e., H�1 and u
i
i
∈ G, to avoid the adversary from gaining

hem.

.4. Security analysis

According to the standard model of interactive proof system
roposed by Bellare and Goldreich (Goldreich, 2001), the proposed
rotocol Proof (CSP, TPA) has completeness, soundness, and zero-
nowledge properties described below.

.4.1. Completeness property
For every available tag � ∈ TagGen(sk, F) and a random challenge

 = (i, vi)i∈I , the completeness of protocol can be elaborated as fol-
ows:

 · e(� ′, h) = e(g, h)

ˇ

s∑
j=1

�j ·
j

· e

⎛
⎝ ∏

(i,vi)∈Q
(�(2)
i

)vi , h

⎞
⎠
˛ · �

· e(g, h)

� · ˇ

s∑
j=1

(�j ·
∑

(i,vi)∈Q
vi · mi,j)

= e

⎛
⎝ ∏

(i,vi)∈Q
(�(2)
i

)vi , h ̨ · �

⎞
⎠ · s∏

j=1

e(u
jj , hˇ).

This equation means that the proposed protocol is efficient for
alid tags.

.4.2. Soundness property
The soundness property means that it be infeasible to fool the

erifier into accepting false statements. We can define the sound-
ess of our protocol as follows: for every faked �* /∈ TagGen(sk, F)
nd every (really or deceptively) interactive machine P*,
r[〈CSP∗(F, �∗), TPA〉(pk,) = 1] ≤ 1/p(�); (1)

here, p(·) is one polynomial and � is a security parameter used
n KeyGen(1�). For every tag �* /∈ TagGen(sk, F), we assume that
Fig. 3. Framework of interactive audit scheme.

there exists an interactive machine P* can pass verification with
any verifier V* with noticeable probability.

In order to prove the nonexistence of P*, to the contrary, we
make use of P* to construct a knowledge extractor M, which gets
the common input (pk,) and rewindable black-box access to the
prover P* and attempts to break the computation Diffie–Hellman
(CDH) assumption in G: given G, G1 = Ga, G2 = Gb∈RG, output Gab ∈
G. We have following theorem (the proof is described in Appendix
A):

Theorem 1. Our audit protocol has (t, �′) knowledge soundness in
random oracle and rewindable knowledge extractor model assuming
the (t, �)-computation Diffie–Hellman (CDH) assumption holds in G

for �′ ≥ �.

The soundness can also be regarded as a stricter notion of
unforgeability for file tags. Thus, this theorem means that the
prover cannot forge file tags or tamper with the data.

3.4.3. Zero-knowledge property
In order to protect the confidentiality of checked data, we are

more concerned about the leakage of private information in the
verification process. It is easy to find that data blocks and their
tags could be obtained by the verifier in some existing schemes.
To solve this problem, we introduce zero-knowledge property into
our audit system as follows: an interactive proof of retrievability
scheme is computational zero knowledge if there exists a prob-
abilistic polynomial-time algorithm S* (call a simulator) such that
for every probabilistic polynomial-time algorithm D, for every poly-
nomial p(·), and for all sufficiently large s, it holds that

∣∣Pr[D(pk, , S∗(pk,)) = 1]

−Pr[D(pk, , 〈CSP(F, �), TPA∗〉(pk,)) = 1]
∣∣ ≤ 1

p(�)
,

where, S*(pk,) denotes the output of simulator S on common
input (pk,) and 〈CSP(F, �), TPA*〉(pk,)1 denotes the view of
interactive protocol between TPA* and CSP(F, �) on common input
indistinguishable.

1 It can also be written as View(〈CSP(F, �), TPA*〉(pk,)).

1088 Y. Zhu et al. / The Journal of Systems and Software 85 (2012) 1083– 1095

Table 2
Signal and its explanation.

Signal Description

� The probability of sector corruption
�b The probability of block corruption
P The detection probability at each verification
PT The total detection probability in an audit period
w The ratio of disrupted blocks in total file blocks
f The frequency of verification

n The number of file blocks
s The number of sectors in each block
sz The total size of outsourced file

r
i
e

T
p

i

4

t
m
a

m
a
u
b
s

4

h
o
i
i
T
o
d

P

H

b
t
c
t
n
f

probability, the TPA can detect sever misbehaviors with a cer-
tain probability P by asking proof for a constant amount of blocks
t = log (1 − P)/log (1 − �b), independently of the total number of file
t The sampling number in verification
e The number of disrupted blocks

Actually, zero-knowledge is a property that captures CSP’s
obustness against attempts to gain knowledge by interacting with
t. For our audit scheme, we make use of the zero-knowledge prop-
rty to guarantee the security of data blocks and signature tags.

heorem 2. The verification protocol Proof (CSP, TPA) has the com-
utational zero-knowledge property in our interactive audit scheme.

Using the standard simulator S*(pk,), the proof of this theorem
s described in Appendix B.

. Optimizing the schedule for probabilistic verifications

No doubt too frequent audit activities will increase the compu-
ation and communication overheads, but less frequent activities

ay not detect abnormality timely. Hence, the scheduling of audit
ctivities is important for improving the quality of audit services.

In order to detect abnormality in a low-overhead and timely
anner, we optimize the performance of audit systems from two

spects: performance evaluation of probabilistic queries and sched-
le of periodic verification. Our basis thought is to achieve overhead
alancing by verification dispatching, which is one of the efficient
trategies for improving the performance of audit systems.

For clarity, we list some used signals in Table 2.

.1. Performance evaluation of probabilistic queries

The audit service achieves the detection of CSP servers misbe-
avior in a random sampling mode in order to reduce the workload
n the server. The detection probability P of disrupted blocks is an
mportant parameter to guarantee that these blocks can be detected
n time. Assume the TPA modifies e blocks out of the n-block file.
he probability of disrupted blocks is �b = e/n. Let t be the number
f queried blocks for a challenge in the protocol proof. We have
etection probability

 = 1 −
(
n − e

n

)t
= 1 − (1 − �b)

t .

ence, the number of queried blocks is t = log (1 −P)/log (1 − �b).
In Fig. 4, we show the same result for the number of queried

locks under different detection probabilities (from 0.5 to 0.99),
he different number of file blocks (from 200 to 10,000), and the
onstant number of disrupted blocks (100). It is easy to find that
he number of queried blocks t is directly proportional to the total
umber of file blocks n for the constant P and e, that is, t ≈ c(P · n)/e
or a sufficiently large n, where c is a constant.2

2 In terms of (1 − e/n)t ≈ 1 − (e · t)/n, we have P ≈ 1 − (1 − (e · t)/n) = (e · t)/n.
Fig. 4. Numbers of queried blocks under different detection probabilities and the
different number of file blocks.

Furthermore, we observe the ratio of queried blocks in the total
file blocks w = t/n under different detection probabilities. Based on
above analysis, it is easy to find that this ratio holds the equation

w = t
n
= log(1 − P)
n · log(1 − �b)

.

To clearly represent this ratio, Fig. 5 plots r for different values of
n, e and P. It is obvious that the ratio of queried blocks tends to be
a constant value for a sufficiently large n. For instance, in Fig. 5, if
there exist 10 disrupted blocks, the TPA asks for w = 30
and 23% of n (1000 ≤ n ≤ 10, 000) in order to achieve P of at least
95% and 90%, respectively. Moreover, this ratio w is also inversely
proportional to the number of disrupted blocks e. For example, if
there exist 100 disrupted blocks, the TPA needs merely to ask for
w = 4.5
and 2.3% of n (n > 1000) in order to achieve the same P, respectively.
Hence, the audit scheme is very effective for higher probability of
disrupted blocks.

In most cases, we adopt the probability of disrupted blocks
to describe the possibility of data loss, damage, forgery or
unauthorized changes. When this probability �b is a constant
Fig. 5. Ratio of queried blocks in the total file blocks under different detection
probabilities and different number of disrupted blocks (for 10 disrupted blocks).

Y. Zhu et al. / The Journal of Systems and Software 85 (2012) 1083– 1095 1089

Fig. 6. Ratio of queried blocks in total file blocks under different detection proba-
b

b
f
t
a
i
d

4

b
t
e
t
t
a
a
i
c
m

w
w
d
c
t
t

n
t
T
P
p
t
p

P

I
t
o

We first analyze the computation cost of the audit scheme
shown in Table 3. In this table, we use [E] to denote the computation
costs of an exponent operation in G, namely, gx, where x is a positive

Table 3
Performance analysis for our scheme.

Our scheme

KeyGen 2[E]
TagGen (2n + s)[E]
ilities and 1% disrupted blocks.

locks (Ateniese et al., 2007). In Fig. 6, we show the ratio changes
or different detection probabilities under 1% disrupted blocks, e.g.,
he TPA asks for 458, 298 and 229 blocks in order to achieve P of
t least 99%, 95% and 90%, respectively. This kind of constant ratio
s useful for the uniformly distributed �b, especially for the storage
evice’s physical failures.

.2. Schedule of periodic verification

Clearly, too frequent audits would lead to a waste of network
andwidth and computing resources of TPA, Clients, and CSPs. On
he other hand, too loose audits are not conducive to detect the
xceptions in time. For example, if a data owner authorizes TPA
o audit the data once a week, TPA arranges this task at a fixed
ime on each weekend. A malicious attack may be implemented
fter finishing an audit period, then there is enough time for the
ttacker to destroy all evidences and escape punishments. Thus, it
s necessary to disperse the audit tasks throughout the entire audit
ycle so as to balance the overload and increase the difficulty of
alicious attacks.
Sampling-based audit has the potential to greatly reduce the

orkload on the servers and increase the audit efficiency. Firstly,
e assume that each audited file has a audit period T, which
epends on how important it is for the owner. For example, the
ommon audit period may be assigned as 1 week or 1 month, and
he audit period for important files may be set as 1 day. Of course,
hese audit activities should be carried out as night or on weekends.

Assume we make use of the audit frequency f to denote the
umber of occurrences of an audit event per unit time. This means
hat the number of TPA’s queries is T · f times in an audit period
. According to above analysis, we have the detection probability

 = 1 − (1 − �b)
n ·w in each audit event. Let PT denote the detection

robability in an audit period T. Therefore, we have the equa-
ion PT = 1 − (1 − P)T·f. In terms of 1 − P = (1 − �b)

n ·w , the detection
robability PT can be denoted as

T = 1 − (1 − �b)
n ·w · T · f .

n this equation, TPA can obtain the probability � depending on the
b
ranscendental knowledge for the cloud storage provider. More-
ver, the audit period T can be appointed by a data owner in
Fig. 7. Ratio of queried blocks in the total file blocks under different audit frequency
for 10 disrupted blocks and 10,000 file blocks.

advance. Hence, the above equation can be used to analyze the
parameter value w and f. It is obvious to obtain the equation

f = log(1 − PT)
w ·n · T · log(1 − �b)

.

This means that the audit frequency f is inversely proportional to
the ratio of queried blocks w. That is, with the increase of verifi-
cation frequency, the number of queried blocks decreases at each
verification process. In Fig. 7, we show the relationship between f
and w under 10 disrupted blocks for 10,000 file blocks. It is easy to
find that a marked drop of w after the increase of frequency.

In fact, this kind of relationship between f and w is a compar-
atively stable value for certain PT, �b, and n due to f · w = (log(1 −
PT))/(n · T · log(1 − �b)). TPA should choose appropriate frequency
to balance the overhead according to above equation. For example,
if e = 10 blocks in 10,000 blocks (�b = 0.1%), then TPA asks for 658
blocks or 460 blocks for f = 7 or 10 in order to achieve PT of at least
99%. Hence, appropriate audit frequency would greatly reduced
the sampling numbers, thus, the computation and communication
overheads will also be reduced.

5. Optimization of tag storage and verification protocol

In the fragment structure, the number of sectors per block s
is an important parameter to affect the performance of storage
services and audit services. Thus, we propose an optimization algo-
rithm for the value of s in this section. Our results show that the
optimal value can not only minimize computation and communi-
cation overheads, but also reduce the size of extra storage, which
is required to store verification tags in CSP.

5.1. Analysis of audit algorithm
Proof(CSP) 1[B] + (t + s + 1)[E]
Proof(TPA) 3[B] + (t + s)[E]

1090 Y. Zhu et al. / The Journal of Systems and Software 85 (2012) 1083– 1095

Table 4
Storage/communication overhead.

Algorithm Our scheme

KeyGen Client 2l0

TagGen
CSP nsl0 + nl1
TPA sl1 + (n + 1)l0

Commit l2 + lT

i
o
b
o
e

o
e

2
a
u
p

8
|
l
l
B
c

i
i
s
F
h
h
f

w
t
a
t
t
T

5

A
f

t
h
v
r
p
t
w
w

c

m

Experimental results are showed in Table 6. It is obvious that the
optimal value of s raises with the increase of P and with the decrease
of �. We choose the optimal value of s on the basis of practical

Table 5
Influence of parameters under different detection probabilities P (� = 0.01).

P 0.8 0.85 0.9 0.95 0.99 0.999
Proof Challenge 2tl0
Response sl0 + (s + 1)l1

nteger in Zp and g ∈ G or GT . We neglect the computation costs
f algebraic operations and simple modular arithmetic operations
ecause they run fast enough (Barreto et al., 2007). More complex
peration is the computation of a bilinear map e(· , ·) between two
lliptic points (denoted as [B]).

Secondly, we analyze the storage and communication costs
f our scheme. We define the bilinear pairing taking the form

 : E(Fpm) × E(Fpkm) → F
∗
pkm

(the definition is from Beuchat et al.,

007; Hu et al., 2007), where p is a prime, m is a positive integer,
nd k is embedding degree (or security multiplier). In this case, we
tilize asymmetric pairing e : G1 × G2 → GT to replace symmetric
airing in the original schemes.

Without loss of generality, let the security parameter � be
0-bits, we need elliptic curve domain parameters over Fp with

p| = 160-bits and m = 1 in our experiments. This means that the
ength of integer is l0 = 2� in Zp. Similarly, we have l1 = 4� in G1,
2 = 24� in G2, and lT = 24� in GT for the embedding degree k = 6.
ased on these definitions, we describe storage and communication
osts in Table 4.

Hence, in our scheme, the storage overhead of a file with 1 MB
s n · s · l0 + n · l1 = 1.04 MB for n = 103 and s = 50, where n · s · l0 = 1 MB
s used to store the original file and n · l1 = 40 kB is the size of the
tored tags. The storage overhead of its index table � is n · l0 = 20 kB.
urthermore, in the verification protocol, the communication over-
ead of challenge is 2t · l0 = 40 · t-Bytes in terms of t, but its response
as a constant-size communication overhead s · l0 + (s + 1) · l1≈ 3 kB

or different-size files.
We define the overhead rate as
 = store(f)/size(f) − 1 = l1

s · l0
,

here store(f) = n · s · l0 + n · l1 and size(f) = n · s · l0. And it should
herefore be kept as low as possible in order to minimize the stor-
ge burden with respect to cloud storage providers. It is obvious
hat a larger s means more lower storage. However, the computa-
ional costs rise sharply when the number of s is large in terms of
able 3.

.2. Optimization of parameters

We then turn our attention to the optimization of parameter s.
ssume � denotes the probability of sector corruption. We have

ollowing theorem:
Given a file with sz = n · s sectors and the probability � of sec-

or corruption, the detection probability of verification protocol
as P ≥ 1 − (1 − �)sz·ω , where ω = t/n denotes sampling probability in
erification protocol. We can obtain following results: for a uniform
andom verification in the audit scheme, �b ≥ 1 − (1 − �)s is the
robability of block corruption with s sectors. For a challenge with

 = n · ω index-coefficient pairs, the verifier can detect block errors
ith probability P ≥ 1 − (1 − �b)t ≥ 1 − ((1 − �)s)n·ω = 1 − (1 − �)sz·ω ,
here sz = n · s.

Given the detection probability P and the probability of sector

orruption �, the optimal value of s is computed by

in
s∈N

{
log(1 − P)
log(1 − �)

a

s
+ b · s + c

}
,

Fig. 8. Relationship between computational costs and the number of sectors in each
block.

where a · t + b · s + c denotes the computational cost of verifica-
tion protocol in the audit scheme, a, b, c ∈ R, and c is a constant.
This conclusion can be obtained from the following process: let
sz = n · s = size(f)/l0. According to above-mentioned results, the sam-
pling probability holds w ≥ (log(1 − P))/(sz · log(1 − �)) = (log(1 −
P))/(n · s · log(1 − �)). In order to minimize the computational cost,
we have

min
s∈N
{a · t + b · s + c} = min

s∈N
{a · n · w + b · s + c}

≥ min
s∈N

{
log(1 − P)
log(1 − �)

a

s
+ b · s + c

}
.

Since a/s is a monotone decreasing function and b · s is a mono-
tone increasing function for s > 0, there exists an optimal value of
s ∈ N in above equation. The optimal value of s is unrelated to a
certain file from this conclusion if the probability � is a constant
value.

For instance, we assume the probability of sector corruption is
a constant value � = 0.01. We set the detection probability P with a
range from 0.8 to 1, e.g., P = {0.8, 0.85, 0.9, 0.95, 0.99, 0.999}. In terms
of Table 3, the computational cost of the verifier can be simplified to
t + s. Then, we can observe the computational costs under different
s and P in Fig. 8. When s is less than the optimal value, the compu-
tational cost decreases evidently with the increase of s, and then it
raises when s is more than the optimal value. More accurately, we
show the influence of parameters, sz · w, s, and t, under different
detection probabilities in Table 5. It is easy to see that the compu-
tational costs raise with the increase of P. Moreover, we can make
sure the sampling number of challenge with following conclusion:
given P, �, and s, the sampling number of verification protocol
are a constant t = n · w ≥ (log(1 − P))/(s · log(1 − �)) for different
files.

Finally, we observe the change of s under different � and P.
sz · w 160.14 188.76 229.11 298.07 458.21 687.31
s 12 14 14 14 18 25
t 14 14 17 22 26 28

Y. Zhu et al. / The Journal of Systems an

Table 6
Influence of parameter s under different probabilities of corrupted blocks � and
different detection probabilities P.

0.1 0.01 0.001 0.0001

0.8 3 12 37 118
0.85 3 14 40 136
0.9 4 14 44 150
0.95 4 14 53 166

s
t
a
N
n

h
w
e
�
a
m
t
v
p

6

a
s
s
i
f
T
a
t
W
5
C
r
d
l

c
i
i
L
a
d
|

d
t
t
r
m
f
t
c
i
a
o

i

0.99 6 18 61 207
0.999 7 25 79 249

ettings and system requisition. For NTFS format, we suggest that
he value of s is 200 and the size of block is 4 kB, which is the same
s the default size of cluster when the file size is less than 16TB in
TFS. In this case, the value of s ensures that the extra storage does
ot exceed 1% in storage servers.

When the number of disrupted blocks is constant, we consider
ow the size of file sz influences on the optimal value of s. In Table 6,
e can observe the change of values in each line grasps this influ-

nces. For example, the optimal value is changed from 79 to 249 if
 = 0.001 and 0.0001 denote 1 disrupted blocks out of 1000 blocks
nd 10,000 blocks. The ratio between two values is 3.15. Further-
ore, it is easy to find that the growth rate of s is 3.4 times when

he size of file grows 10 times. Hence, we can also define that the
alue of s grows with the increase of the size of file and cluster in
ractical storage systems.

. Implementation and experimental results

To validate the efficiency of our approach, we have implemented
 prototype of an audit system based on our proposed solution. This
ystem have been developed in an experimental cloud computing
ystem environment (called M-Cloud) of Peking University, which
s constructed within the framework of the IaaS to provide power-
ul virtualization, distributed storage, and automated management.
o verify the performance of our solution, we have simulated our
udit service and storage service using two local IBM servers with
wo Intel Core 2 processors at 2.16 GHz and 500M RAM running

indows Server 2003 and 64-bit Redhat Enterprise Linux Server
.3, respectively. These two servers were connected into the M-
loud via 250 MB/s of network bandwidth. The storage server was
esponsible for managing a 16TB storage array based on Hadoop
istributed file system (HDFS) 0.20 cluster with 8 worker nodes

ocated in our laboratory.
To develop the TPA’s schedule algorithm and CSP’s verifi-

ation daemon, we have used the GMP and PBC libraries to
mplement a cryptographic library. This C library contains approx-
mately 5200 lines of codes and has been tested on Windows and
inux platforms. The elliptic curve utilized in the experiment is

 MNT curve, with base field size of 160 bits and the embedding
egree 6. The security level is chosen to be 80 bits, which means

p| = 160.
Firstly, we quantify the performance of our audit scheme under

ifferent parameters, such as file size sz, sampling ratio w, sec-
or number per block s, and so on. Our previous analysis shows
hat the value of s should grow with the increase of sz in order to
educe computation and communication costs. Thus, our experi-
ents were carried out as follows: the stored files were chosen

rom 10 KB to 10 MB, the sector numbers were changed from 20
o 250 in terms of the file sizes, and the sampling ratios were also
hanged from 10% to 50%. The experimental results were showed
n the left side of Fig. 9. These results dictate that the computation

nd communication costs (including I/O costs) grow with increase
f file size and sampling ratio.

Next, we compare the performance for each activity in our ver-
fication protocol. We have described the theoretical results in
d Software 85 (2012) 1083– 1095 1091

Tables 3 and 4: the overheads of “commitment” and “challenge”
resemble one another, and the overheads of “response” and “ver-
ification” also resemble one another. To validate the theoretical
results, we changed the sampling ratio w from 10% to 50% for a
10 MB file and 250 sectors per block. In the right side of Fig. 9,
we show the experiment results, in which the computation and
communication costs of “commitment” and “challenge” are slightly
changed for sampling ratio, but those for “response” and “verifica-
tion” grow with the increase of sampling ratio.

Finally, we evaluate the performance of our audit scheme in
terms of computational overhead, due to these two schemes have
constant-size communication overhead. For sake of comparison,
our experiments used the same scenario as previous analysis,
where a fix-size file is used to generate the tags and prove pos-
session under different s. For a 150 kB file, the computational
overheads of verification protocol are showed in Fig. 10(a) when
the value of s ranges from 1 to 50 and the size of sector is 20-
Bytes. It is obvious that the experiment result is consistent with
the analysis in Fig. 8. The computational overheads of the tag
generation are also showed in Fig. 10(b) in the same case. The
results indicate that the overhead is reduced when the value of s is
increased.

7. Related works

There has been a considerable amount of work done on
untrusted outsourced storage. The most direct way to enforce
the integrity control is to employ cryptographic hash function.
Yumerefendi and Chase proposed a solution for authenticated net-
work storage (Yumerefendi and Chase, 2007; Hsiao et al., 2009),
using a hash tree (called as Merkle tree) as the underlying data
structure. However their processing of updates is computationally
expensive. Fu et al. (2002) described and implemented a method
for efficiently and securely accessing a read-only file system that
has been distributed to many providers. This architecture is a solu-
tion for efficiently authenticating operations on an outsourced file
system.

Some recent work (Li et al., 2006; Ma et al., 2005; Xie et al.,
2007; Yavuz and Ning, 2009) studied the problem of auditing the
integrity for outsourced data or database. By explicitly assuming an
order of the records in database, Pang et al. (Ma et al., 2005) used an
aggregated signature to sign each record with the information from
two neighboring records in the ordered sequence, which ensures
the result of a simple selection query is continuous by checking the
aggregated signature. Other work (Li et al., 2006; Xie et al., 2007)
used a Merkle tree to audit the completeness of query results, but
in some extreme cases, the overhead could be as high as process-
ing these queries locally, which can significantly undermine the
benefits of database outsourcing. Moreover, to ensure freshness,
an extra system is needed to deliver the up-to-date root signature
to all clients in a reliable and timely manner.

To check the integrity of stored data without download, some
researchers have proposed two basic approaches called provable
data possession (PDP) (Ateniese et al., 2007) and proofs of retriev-
ability (POR) (Juels, 2007). Ateniese et al. (2007) first proposed the
PDP model for ensuring possession of files on untrusted storages
and provided an RSA-based scheme for the static case that achieves
O(1) communication costs. They also proposed a publicly verifiable
version, which allows anyone, not just the owner, to challenge the
servers for data possession. This property greatly extend applica-
tion areas of PDP protocol due to the separation of data owners and
the authorized users.
In order to support dynamic data operations, Ateniese et al. have
developed a dynamic PDP solution called scalable PDP (Ateniese
et al., 2008). They proposed a lightweight PDP scheme based on
cryptographic Hash function and symmetric key encryption, but

1092 Y. Zhu et al. / The Journal of Systems and Software 85 (2012) 1083– 1095

Fig. 9. Experiment results under different file size, sampling ratio, and sector number.

nt s fo

t
r
b
o
E
H
t
c
l
r

p
U
u
v
p
O
a
t
O
T
h
e
p
t

s
a
a
t
t
l
a
t

Fig. 10. Experiment results of differe

he servers can deceive the owners using previous metadata or
esponses due to lack of the randomness in the challenge. The num-
er of updates and challenges is limited and fixed a priori. Also,
ne cannot perform block insertions anywhere. Based on this work,
rway et al. (2009) introduced two dynamic PDP schemes with a
ash function tree to realize O(log n) communication and compu-

ational costs for a file consisting of n blocks. The basic scheme,
alled DPDP-I, remains the drawback of SPDP, and in the ‘block-
ess’ scheme, called DPDP-II, the data blocks can be leaked by the
esponse of challenge.

Juels (2007) presented a POR scheme which relies largely on
reprocessing steps the client conducts before sending a file to CSP.
nfortunately, these operations prevent any efficient extension to
pdate data. Shacham and Waters (2008) proposed an improved
ersion of this protocol called Compact POR, which uses homomor-
hic property to aggregate a proof into O(1) authenticator value and
(t) computation costs for t challenge blocks, but their solution is
lso static and there exist leakages of data blocks in the verifica-
ion process. Wang et al. (2009) presented a dynamic scheme with
(log n) costs by integrating above CPOR scheme and Merkle Hash
ree (MHT) in DPDP. Furthermore, several POR schemes and models
ave been recently proposed including (Bowers et al., 2009; Dodis
t al., 2009). Since the responses of challenges have homomorphic
roperty, above schemes (especially CPOR schemes) can leverage
he PDP construction in hybrid clouds.

Based on above works, Wang et al. (2010) introduced PDP/POR
chemes into audit systems. This work is motivated by the public
udit systems of data storages and provided a privacy-preserving
uditing protocol. Moreover, this scheme achieves batch auditing
o support efficient handling of multiple auditing tasks. Although
heir solution is not suitable for practical applications because of

ack of support for dynamic operations and rigorous performance
nalysis, it points out a promising research direction for checking
he integrity of outsourced data in untrusted storage.
r a 150 kB file (� = 0.01 and P = 0.99).

8. Conclusions

In this paper, we addressed the construction of an effi-
cient audit service for data integrity in clouds. Profiting from
the standard interactive proof system, we proposed an interac-
tive audit protocol to implement the audit service based on a
third party auditor. In this audit service, the third party audi-
tor, known as an agent of data owners, can issue a periodic
verification to monitor the change of outsourced data by pro-
viding an optimized schedule. To realize the audit model, we
only need to maintain the security of the third party auditor
and deploy a lightweight daemon to execute the verification pro-
tocol. Hence, our technology can be easily adopted in a cloud
computing environment to replace the traditional Hash-based
solution.

More importantly, we proposed and quantified a new audit
approach based on probabilistic queries and periodic verification,
as well as an optimization method of parameters of cloud audit ser-
vices. This approach greatly reduces the workload on the storage
servers, while still achieves the detection of servers’ misbehavior
with a high probability. Our experiments clearly showed that our
approach could minimize computation and communication over-
heads.

Acknowledgements

We thank the anonymous reviewers for their useful com-
ments on this paper. The work of Yan Zhu was supported by
the National Natural Science Foundation of China (Project No.
61170264 and No. 10990011). Gail-Joon Ahn and Hongxin Hu were
partially supported by the Grants from US National Science Foun-

dation (NSF-IIS-0900970 and NSF-CNS-0831360) and Department
of Energy (DE-SC0004308). This work of Stephen S. Yau was par-
tially supported by the Grants from US National Science Foundation
(NSF-CCF-0725340).

ms an

A

P
t
w
a

P

U
e
l
o
s

e

Y. Zhu et al. / The Journal of Syste

ppendix A. Security proof of construction

roof. For some unavailable tags {�*} /∈ TagGen(sk, F), we assume
hat there exists an interactive machine P*3 can pass verification
ith noticeable probability, that is, there exists a polynomial p(·)

nd all sufficiently large �’s,

r[〈P∗(F, {�∗}), V 〉(pk,) = 1] ≥ 1/p(�). (A.1)

sing P*, we build a probabilistic algorithm M (called knowledge
xtractor) that breaks the computation Diffie–Hellman (CDH) prob-
em in a cyclic group G ∈ S of order p. That is, given G, G1, G2∈RG,
utput Gab ∈ G, where G1 = Ga, G2 = Gb. The algorithm M is con-
tructed by interacting with P* as follows:

(� ′′, h) = e

⎛
⎝∏
i∈I1

(�(2)
ti

⎞
⎠

vi

·
∏
i∈I2

(�(2)
t′
i

)vi , H
′′
1)·e

⎛
⎝ s∏
j=1

u

′′
j

j
, H2

⎞
⎠ ·(�′′)−1

= e

⎛
⎝∏
i∈I1

(Gri

⎞
⎠

vi

·
∏
i∈I2

(Gri · G
r′
i

2)vi , H
′′
1) · e

⎛
⎝ s∏
j=1

u

′′
j

j
, H2

⎞
⎠ · −1

�′′

= e
(∏

i∈I
Gri · vi , H′1

)
· e

⎛
⎝∏
i∈I2

G
r′
i
· vi

2 , H′1

⎞
⎠

·

⎛
⎝e
⎛
⎝ s∏
j=1

u

′
j

j
, H2

⎞
⎠ · −1

�′

⎞
⎠
�

= e

(∏
i∈I
Gri · vi , H′1

)
· e

⎛
⎝∏
i∈I2

G
r′
i
· vi

2 , H′1

⎞
⎠

·

⎛
⎝e(� ′, h)� · e

(∏
i∈I
Gri · vi , H′1

)−�⎞⎠

= e(
�

� ′, h) · e

⎛
⎜⎜⎝G
∑
i∈I2

r′
i
vi

2 · G(1−�)
∑
i∈I

rivi , H′1

⎞
⎟⎟⎠ . (A.2)

Setup: M chooses a random r∈RZp and sets g = G, h = Gr, H1 = Gr1,
H2 = Gr2 as the public key pk = (g, h, H1, H2), which is sent
to P*;

Learning: given a file F = {mi,j}i∈[1,n]
j∈[1,s] , M first chooses s random

�i∈RZp and ui = G�i2 for i ∈ [1, s]. Secondly, M assigns
the indexes 1, . . ., n into two sets T = {t1, . . ., tn/2} and
T ′ = {t′1, . . . , t′

n/2}. Let mti,j /= mt′
i
,j for all i ∈ [1, n/2] and

j ∈ [1, s]. Then, M builds an index table � and �(1) in
terms of the original scheme and generates the tag of
each block, as follows:

• For each ti ∈ T, M chooses ri∈RZp and sets �(2)
ti
=∑s
H�(1) (�ti) = Gri and �ti = Gri1 · G j=1
�j · mti,j

2 .

3 In this appendix, CSP and TPA are written as P and V for short, respectively.
d Software 85 (2012) 1083– 1095 1093

• For each t′
i
∈ T ′, M uses ri and two random

r′
i
, �i∈RZp to sets �(2)

t′
i
= H�(1) (�t′

i
) = Gri · G

r′
i

2 and

�t′
i
= G�i1 · G

∑s

j=1
�j · mt′

i
,j

2 .

M checks whether e(�t′
i
, h) ?=e(�(2)

t′
i
, H1) · e(

∏s
j=1u

mt′
i
,j

j
, H2)

for all t′
i
∈ T ′. If the result is true, then out-

puts Gab = Ga2 = (G�i · Gri1)(r′
i
)−1

, otherwise M sends
(F, �∗ = {�i}ni=1) and = (�(1), u = {ui}, �) to P*. At any
time, P* can query the hash function H�(1) (�k), M
responds with �(2)

ti
or �(2)

t′
i

with consistency, where k = ti

or t′
i
.

Output: M chooses an index set I ⊂ [1, n/2] and two subset I1
and I2, where I = I1

⋃
I2, |I2| > 0. M constructs the chal-

lenges {vi}i∈I and all vi /= 0. Then M simulates V to run an
interactive 〈P∗, M〉 as follows:

• Commitment. M receives (H′1, �′) from P*;
• Challenge. M sends the challenge Q1 = {(ti, vi)}i∈I to P*;
• Response. M receives (� ′, {
′

j
}s
j=1) from P*.

M checks whether or not these responses is an effective
result according to the verification equation in protocol.
If it is true, then M completes a rewindable access to the
prover P* as follows:

• Commitment. M receives (H
′′
1, �′′) from P*;

• Challenge. M sends the following challenge to P*, Q2 =
{(ti, vi)}i∈I1

⋃
{(t′
i
, vi)}i∈I2 ;

• Response. M receives (� ′′, {
′′
j
}s
j=1) or a special halting-

symbol from P*.
If the response is not a halting-symbol, then M checks

whether the response is effective by Eq. (A.3), H′1
?=H′′1,

and �′ ?=�′′. If they are true, then M computes

� =

′′
j
−
′

j∑
i∈I2 vi · (mt′

i
,j − mti,j)

for any j ∈ [1, s] and verifies H′1
?=H�1 to ensure this is an

effective rewindable access. Finally, M outputs

Gab =
(
� ′′ · � ′−� · G� · (�−1)

∑
i∈I

rivi
1

) 1

� ·
∑

i∈I2
r′
i
· vi
, (A.3)

where

� =

∑
i∈I1

s∑
j=1

�jmti,jvi +
∑

i∈I2

s∑
j=1

�jmt′
i
,jvi

∑
i∈I

s∑
j=1

�jmti,jvi

and � /= 1.

It is obvious that we set ̨ = a and ̌ = b in the above construction.
Since the tags �ti are available in ∀ti ∈ T, the responses in the first
interactive satisfies the equation:

′ ′
∏

(2) vi ′
s∏
′

j
� · e(� , h) = e(

i∈I
(�ti) , H1) · e(

j=1

u
j
, H2) =

= e(G
∑
i∈I

ri · vi , H′1) · e(
s∏
j=1

u

′
j

j
, H2).

1 ms an

H

t
p
r
G
H

B
w

i

e

e

i

.

T

I

e

h

P p(�)

I
t
�

A

P
c
k

1
2

3

4
5

a
(
m
c
c
H

(
u
p

094 Y. Zhu et al. / The Journal of Syste

owever, the �t′
i

are unavailable in ∀t′
i
∈ T ′. In the second interac-

ion, we require that M can rewind the prover P*, i.e., the chosen
arameters are the same in two protocol executions (called as
ewindable black-box knowledge extractor (Cramer et al., 2000;
oldreich, 2001)). In the above construction, this property ensures
′
1 = H

′′
1, �′ = �′′, and for all i ∈ [1, s],

′′
j −
′j = � ·

∑
i∈I

vi · (mt′
i
,j − mti,j) = � ·

∑
i∈I2

vi · (mt′
i
,j − mti,j).

y checking H′1 = H�1 for all � computed from this equation,
e can make sure of the consistence of
′

i
=

′′
i

for i ∈ [1, s]

n two executions. Thus, we have e

(∏s
j=1u

′
j

j
, H2

)
· �′ − 1 =

(G2, H2)
∑

i∈I
∑s

j=1
�jmti,j

vi and

(
s∏
j=1

u

′′
j

j
, H2) ·

−1
�′′ = e(G2, H2)

∑
i∈I1

s∑
j=1

�jmti,j
vi

· e(G2, H2)

∑
i∈I2

s∑
j=1

�jmt′
i
,jv

his means that e

(∏s
j=1u

′′
j

j
, H2

)
·
−1
�′′ = (e

(∏s
j=1u

′
j

j
, H2

)
·
−1
�′)� .

n terms of the responses, we hold the Eq. (A.2). Hence, we have the

quation e(� ′′ ·
−�
� ′ , h) = e

(
G

∑
i∈I2

r′
i
· vi

2 · G(1−�)
∑

i∈I rivi , H′1

)
, H′1 =

a� , and G1 = Ga, thus the Eq. (A.3) holds. Furthermore, we have

r[M(CDH(G, Ga, Gb)) = Gab] ≥ Pr[〈P∗(F, {�∗}), M〉(pk,) = 1] ≥ 1/

t follows that M can solve the given �-CDH challenge with advan-
age at least �, as required. This completes the proof of theorem.

ppendix B. Proof of zero-knowledge

roof. For the protocol S, we construct a machine S, which is
alled a simulator for the interaction of V with P. Given the public
ey pk = (g, h, H1, H2), for a file F, a public verification information

 = (�(1), u1, . . ., us, �), and an index set I (t = |I|), the simulator S*(pk,
) executes as follows:

. Chooses a random � ′∈RG and computes e(� ′, h);

. Chooses t random coefficients {vi}i∈I∈RZtp and a random �∈RZp to

compute H′1 ← H�1 and A1 ← e(
∏
i∈I
H�(1) (�i)

vi , H′1);

. Chooses s random {
i}∈RZsp to A2 ← e
(∏s

j=1u

j
j
, H2

)
;

. Calculates � ← A1 · A2 · e(� ′, h)−1.

. Outputs (C, Q, �) = ((H′1, �), {(i, vi)}ti=1, (� ′,
)) as the simulation
results.

It is obvious that the output of simulator S*(pk,) is an
vailable verification for Eq. (A.3). Let View(〈P(F, �), V∗〉(pk,)) =
(H′1, �), {(i, vi)

t
i=1}, (� ′,
)) denote the output of the interactive

achine V* after interacting with the interactive machine P on
ommon input (pk,). In fact, every pair of variables is identi-
ally distributed in two ensembles, for example, H′1, {(i, vi)} and

′
1, {(i, vi)} are identically distributed due to �, {vi}∈RZp, as well as
� ′,
) and (� ′,
) is identically distributed due to � ′∈RG,
j∈RZp and
j ←
j + �

∑
i∈Ivi · mi,j for i ∈ [1, s]. Two variables, � and �, are com-

utational distinguishable because the � is identically distributed
d Software 85 (2012) 1083– 1095

.

in terms of the random choice of all
i and the distribution of � is
decided on the randomized assignment of above variables.

Hence, the ensembles S*(pk,) and View(〈P(F, �), V*〉(pk,))
is computationally indistinguishable, thus for every probabilistic
polynomial-time algorithm D, for every polynomial p(·), and for all
sufficiently large �, it holds that∣∣Pr[D(pk, , S∗(pk,)

)
= 1]

−Pr[D
(
pk, , View(P(F, �), V∗)(pk,)

)
] = 1

∣∣ ≤ 1
p(�)

.

The fact that such simulators exist means that V* does not gain
any knowledge from P since the same output could be generated
without any access to P. That is, the S is a zero-knowledge protocol.
�

References

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Pat-
terson, D.A., Rabkin, A., Stoica, I., Zaharia, M., 2010. A view of cloud computing.
Commun. ACM 53 (4), 50–58.

Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J., Song,
D.X., 2007. Provable data possession at untrusted stores. In: Proceedings of the
2007 ACM Conference on Computer and Communications Security, CCS 2007,
pp. 598–609.

Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G., 2008. Scalable and efficient prov-
able data possession. In: Proceedings of the 4th International Conference on
Security and Privacy in Communication Networks, SecureComm, pp. 1–10.

Barreto, P.S.L.M., Galbraith, S.D., O’Eigeartaigh, C., Scott, M., 2007. Efficient pairing
computation on supersingular abelian varieties. Des. Codes Cryptogr. 42 (3),
239–271.

Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E., 2007. Arithmetic operators for
pairing-based cryptography. In: Cryptographic Hardware and Embedded Sys-
tems – CHES 2007, 9th International Workshop, pp. 239–255.

Boneh, D., Boyen, X., Shacham, H.,2004. Short group signatures. In: In Proceedings
of CRYPTO 04, LNCS Series. Springer-Verlag, pp. 41–55.

Boneh, D., Franklin, M., 2001. Identity-based encryption from the weil pairing. In:
Advances in Cryptology (CRYPTO’2001). Vol. 2139 of LNCS, pp. 213–229.

Bowers, K.D., Juels, A., Oprea, A., 2009. Hail: a high-availability and integrity layer for
cloud storage. In: ACM Conference on Computer and Communications Security,
pp. 187–198.

Cramer, R., Damgård, I., MacKenzie, P.D., 2000. Efficient zero-knowledge proofs of
knowledge without intractability assumptions. In: Public Key Cryptography, pp.
354–373.

Dodis, Y., Vadhan, S.P., Wichs, D., 2009. Proofs of retrievability via hardness
amplification. In: Reingold, O. (Ed.), Theory of Cryptography, 6th Theory of Cryp-
tography Conference, TCC 2009. Vol. 5444 of Lecture Notes in Computer Science.
Springer, pp. 109–127.

Erway, C.C., Küpç ü, A., Papamanthou, C., Tamassia, R., 2009. Dynamic provable data
possession. In: Proceedings of the 2009 ACM Conference on Computer and Com-
munications Security, CCS 2009, pp. 213–222.

Fu, K., Kaashoek, M.F., Mazières, D., 2002. Fast and secure distributed read-only file
system. ACM Trans. Comput. Syst. 20 (1), 1–24.

Goldreich, O., 2001. Foundations of Cryptography: Basic Tools. Vol. Basic Tools. Cam-
bridge University Press.

Hsiao, H.-C., Lin, Y.-H., Studer, A., Studer, C., Wang, K.-H., Kikuchi, H., Perrig, A., Sun,
H.-M., Yang, B.-Y., 2009. A study of user-friendly hash comparison schemes. In:
ACSAC, pp. 105–114.

Hu, H., Hu, L., Feng, D., 2007. On a class of pseudorandom sequences from elliptic
curves over finite fields. IEEE Trans. Inform. Theory 53 (7), 2598–2605.

Juels Jr., A., Kaliski, B.S., 2007. Pors: proofs of retrievability for large files. In: Proceed-
ings of the 2007 ACM Conference on Computer and Communications Security,
CCS 2007, pp. 584–597.

Ko, R.K.L., Lee, B.S., Pearson, S., 2011. Towards achieving accountability, auditabil-
ity and trust in cloud computing. In: Abraham, A., Mauri, J.L., Buford, J.F.,
Suzuki, J., Thampi, S.M. (Eds.), Advances in Computing and Communications.
Vol. 193 of Communications in Computer and Information Science. Springer,
Berlin/Heidelberg, pp. 432–444.

Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L., 2006. Dynamic authenticated index
structures for outsourced databases. In: Chaudhuri, S., Hristidis, V., Polyzotis, N.
(Eds.), SIGMOD Conference. ACM, pp. 121–132.

Ma, D., Deng, R.H., Pang, H., Zhou, J., 2005. Authenticating query results in data
publishing. In: Qing, S., Mao, W., Lopez, J., Wang, G. (Eds.), ICICS. Vol. 3783 of
Lecture Notes in Computer Science. Springer, pp. 376–388.

Schnorr, C.-P., 1991. Efficient signature generation by smart cards. J. Cryptol. 4 (3),
161–174.
Shacham, H., Waters, B., 2008. Compact proofs of retrievability. In: Advances in
Cryptology – ASIACRY, 2008, 14th International Conference on the Theory and
Application of Cryptology and Information Security, pp. 90–107.

Tchifilionova, V., 2011. Security and privacy implications of cloud computing c lost in
the cloud. In: Camenisch, J., Kisimov, V., Dubovitskaya, M. (Eds.), Open Research

ms an

W

W

X

Y

Y

Y
U
t
H
U
i

H
C
E
E
r

Y. Zhu et al. / The Journal of Syste

Problems in Network Security. Vol. 6555 of Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg, pp. 149–158.

ang, C., Wang, Q., Ren, K., Lou, W., 2010. Privacy-preserving public auditing for
data storage security in cloud computing. In: INFOCOM, 2010 Proceedings IEEE,
pp. 1–9, 14-19.

ang, Q., Wang, C., Li, J., Ren, K., Lou, W., 2009. Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Proceedings of the
14th European Symposium on Research in Computer Security, ESORICS 2009,
pp. 355–370.

ie, M., Wang, H., Yin, J., Meng, X., 2007. Integrity auditing of outsourced data. In:
Koch, C., Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A.,
Florescu, D., Chan, C.Y., Ganti, V., Kanne, C.-C., Klas, W., Neuhold, E.J. (Eds.), VLDB.
ACM, pp. 782–793.

avuz, A.A., Ning, P., 2009. Baf: An efficient publicly verifiable secure audit logging
scheme for distributed systems. In: ACSAC, pp. 219–228.

umerefendi, A.R., Chase, J.S., 2007. Strong accountability for network storage. ACM
Trans. Storage (TOS) 3 (3).

an Zhu received the Ph.D. degree in computer science from Harbin Engineering
niversity, China, in 2005. He was an associate professor of computer science in

he Institute of Computer Science and Technology at Peking University since 2007.
e worked at the Department of Computer Science and Engineering, Arizona State
niversity as a visiting associate professor from 2008 to 2009. His research interests

nclude cryptography and network security.
ongxin Hu is currently working toward the Ph.D. degree from the School of
omputing, Informatics, and Decision Systems Engineering, Ira A. Fulton School of
ngineering, Arizona State University, Tempe. He is also a member of the Security
ngineering for Future Computing Laboratory, Arizona State University. His current
esearch interests include access control models and mechanisms, security in social
d Software 85 (2012) 1083– 1095 1095

network and cloud computing, network and distributed system security and secure
software engineering.

Gail-Joon Ahn received the Ph.D. degree in information technology from George
Mason University, Fairfax, VA, in 2000. He was an Associate Professor at the Col-
lege of Computing and Informatics, and the Founding Director of the Center for
Digital Identity and Cyber Defense Research and Laboratory of Information Integra-
tion, Security, and Privacy, University of North Carolina, Charlotte. He is currently
an Associate Professor in the School of Computing, Informatics, and Decision Sys-
tems Engineering, Ira A. Fulton School of Engineering and the Director of Security
Engineering for Future Computing Laboratory, Arizona State University, Tempe.
His research interests include information and systems security, vulnerability and
risk management, access control, and security architecture for distributed systems,
which has been supported by the U.S. National Science Foundation, National Security
Agency, U.S. Department of Defense, U.S. Department of Energy, Bank of Amer-
ica, Hewlett Packard, Microsoft, and Robert Wood Johnson Foundation. Dr. Ahn
is a recipient of the U.S. Department of Energy CAREER Award and the Educa-
tor of the Year Award from the Federal Information Systems Security Educators
Association.

Stephen S. Yau received the B.S. degree from National Taiwan University, and the
M.S. and Ph.D. degrees from the University of Illinois, Urbana, all in electrical engi-
neering. He is Professor of Computer Science and Engineering and the Director
of Information Assurance Center at Arizona State University, Tempe. He was pre-
viously with the University of Florida, Gainesville and Northwestern University,

Evanston, Illinois. He has served as the president of the IEEE Computer Society
and the Editor-in-Chief of Computer. His current research is in cyber security,
distributed computing systems, software engineering, service-based computing
and cloud computing systems. Contact him at yau@asu.edu or visit his Website:
http://dpse.asu.edu/yau/.

http://dpse.asu.edu/yau/

	Efficient audit service outsourcing for data integrity in clouds
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Audit system architecture
	3 Construction of interactive audit scheme
	3.1 Notations and preliminaries
	3.2 Definition of interactive audit
	3.3 Proposed construction
	3.4 Security analysis
	3.4.1 Completeness property
	3.4.2 Soundness property
	3.4.3 Zero-knowledge property

	4 Optimizing the schedule for probabilistic verifications
	4.1 Performance evaluation of probabilistic queries
	4.2 Schedule of periodic verification

	5 Optimization of tag storage and verification protocol
	5.1 Analysis of audit algorithm
	5.2 Optimization of parameters

	6 Implementation and experimental results
	7 Related works
	8 Conclusions
	Acknowledgements
	Appendix A Security proof of construction
	Appendix B Proof of zero-knowledge
	References

