HonevyMix: Toward SDN-based Intelligent Honeynet

Wonkyu Han, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn
Arizona State University
{whan7, zzhao30, doupe, gahn}@asu.edu

ABSTRACT

Honeynet is a collection of honeypots that are set up to at-
tract as many attackers as possible to learn about their pat-
terns, tactics, and behaviors. However, existing honeypots
suffer from a variety of fingerprinting techniques, and the
current honeynet architecture does not fully utilize features
of residing honeypots due to its coarse-grained data control
mechanisms. To address these challenges, we propose an
SDN-based intelligent honeynet called HONEYMIX. HON-
EYMIX leverages the rich programmability of SDN to cir-
cumvent attackers’ detection mechanisms and enables fine-
grained data control for honeynet. To do this, HONEYMIX
simultaneously establishes multiple connections with a set
of honeypots and selects the most desirable connection to
inspire attackers to remain connected. In this paper, we
present the HONEYMIX architecture and a description of its
core components.

Keywords

Software-defined Networking; Network Function Virtualiza-
tion; Honeynet; Honeypot

1. INTRODUCTION

Honeypots [29], as a form of electronic baits, are built
to intentionally expose vulnerable resources to attackers so
as to encourage probing and exploiting. Because the key
objective of honeypots is to learn about attackers’ behav-
iors and capture new types of malware, honeypots do not
have to implement all functionalities of a production sys-
tem. Consequently, honeypots usually emulate or simulate
certain systems and services to reduce the computational
and maintenance cost.

However, emulator-based honeypots, including operating
system and services, can be easily fingerprinted. For exam-
ple, recent research efforts [1] revealed that an SSH honey-
pot called Kippo [7] always returns a hardcoded timestamp
when attackers access its system information using the sim-
ple Linux command uname -r. Another honeypot called

Permission to make digital or hard copies of all or part o thiork for personal or

classroom use is granted without fee provided that copeesiar made or distributed

for profit or commercial advantage and that copies bear thiise and the full cita-

tion on the first page. Copyrights for components of this waskied by others than

ACM must be honored. Abstracting with credit is permitted.cbpy otherwise, or re-

publish, to post on servers or to redistribute to lists, neguprior specific permission

and/or a fee. Request permissions from permissions@agm.or
SDN-NFVSec' 16, March 11, 2016, New Orleans, LA, USA.
(© 2016 ACM. ISBN 978-1-4503-4078-6/16/03. .. $15.00

DOI: http://dx.doi.org/10.1145/2876019.2876022

Kojoney [9], which also offers an SSH service, only needs
a slightly different detection method, since it returns the
timestamp when Kojoney was installed. Using such detec-
tion techniques, attackers can easily identify honeypots and
behave differently afterwards. Therefore, techniques that
prevent attackers from detecting the existence of emulated
system and services are imperative in building effective hon-
eypots.

Honeynet [23, 30], which is a network of honeypots, in-
evitably poses the same problem of honeypots themselves.
Moreover, honeynets must control incoming and outgoing
data in the network and aggregate captured data from differ-
ent honeypots. For example, the third generation (Gen-II1)
honeynet [28, 13] employs a customized firewall called hon-
eywall as the gateway of the network to realize better con-
trol on inbound /outbound traffic. Honeywall runs in layer-2
bridge mode to hide its existence and monitors all incoming
and outgoing traffic. It is also used to contain and limit the
large volume of outbound traffic generated by compromised
honeypots (e.g., when used in a DDoS attack). However,
Gen-III architecture cannot fully support today’s heteroge-
neous services in honeynet due to its coarse-grained data
control. For example, let us assume that honeypot A ex-
poses XSS vulnerability while running a fake HTTP service,
and we want to deploy a new honeypot B that emulates
SQL injection vulnerability over HT'TP. Since conventional
architecture only allows one service to interact with attack-
ers at any given time, opportunity for collecting SQL injec-
tion attack (or XSS attack) is inevitably restricted. We can
also consider that the honeypot B emulates the HTTP ser-
vice and XSS vulnerability in a different level of interaction.
Current architecture is still failing in combining both hon-
eypots to attract as many attacks as possible. Existing data
control mechanisms in Gen-III architecture are not sufficient
to accommodate such cases.

To defeat honeypot fingerprinting techniques and to pro-
vide fine-grained data control for honeynet, we propose to
leverage the emerging software-defined networking (SDN)
architecture and techniques [24]. SDN provides a flexible
and programmable network environment along with enhanced
control of the network by separating the control plane from
the data plane. In SDN, a network administrator (or a pro-
gram operating on their behalf) can centrally program data
control logic via specific APIs (i.e., OpenFlow [12]). Because
an SDN switch can dynamically control network traffic by
applying various actions, data control in honeynet can cen-
trally be managed with the help of SDN.

—

NG

=W N =

(o0}

class command_uname(HoneyPotCommand) :

def call(self):

if len(self.args) and self.args[0].strip() in

(‘-a’, ‘--all’):

self .writeln(‘Linux %s 2.6.26-2-686 #1 SMP
Wed Nov 4 20:45:37 UTC 2009 i686 GNU/
Linux’ %self.honeypot.hostname)

else:

self.writeln (‘Linux’)

commands [‘/bin/uname’] = command_uname

Figure 1: Hardcoded Linux Version in Kippo Hon-
eypot Source Code.

def process_uname(self):
self.transport.write (FAKE_0S+‘\r\n’)

FQDN = "fqdn_placeholder" # fake domain name

(i.e., www.example.com)
FAKE_KERNEL_VERSION = "2.6.9-5.ELsmp #1 SMP"

TIMESTAMP = datetime.now () .strftime ("%b %d %H
M US hZ AY™)

FAKE_0S="Linux "+FQDN+" "+FAKE_KERNEL_VERSION
+" "+TIMESTAMP+" 1386 GNU/Linux"

Figure 2: Timestamp Generation in Kojoney Hon-
eypot Source Code.

To take advantage of SDN in building such a honeynet, we
propose an SDN-enabled intelligent honeynet called HON-
EYMIiXx. HONEYMIX keeps a map of all available services in
the network and generates data control rules in a central-
ized manner. To maximize the use of every honeypot, HON-
EYMIX adopts group communication methods (multicast) to
distribute incoming traffic to a set of associated honeypots.
Then, HONEYMIX selects the most desirable connection that
might induce attackers further behaviors, and it replies back
to attackers while associated honeypots collecting malicious
data. To do this, HONEYMIX has five core components: (1)
Response Scrubber module, (2) Forwarding Decision Engine
(FDE), (3) Connection Selection Engine (CSE), (4) Behav-
ior Learner module, and (5) SDN switch (es).

This paper is organized as follows. We discuss the lim-
itations of existing honeynet architecture in Section 2. To
solve the problems, We present the design of HONEYMIxX
along with its core components in Section 3. In Section 4,
we discuss related work. Section 5 concludes this paper.

2. PROBLEM STATEMENT

In this section we overview two limitations of existing hon-
eynets: (1) most honeypots can be easily fingerprinted and
(2) Gen-III honeynets only provide coarse-grained data con-
trol.

2.1 Honeypot Detection Techniques

A wide range of fingerprinting techniques have been de-
vised to detect the existence of honeypots. Some efforts [1,
22] focused on finding a group of invariants that indicates the
operating system (or the service) is emulated. For example,
Dean et al. [1] revealed that the Kippo honeypot [7], when
emulating a fake SSH service, always returns the same string
when attackers access its system information. As shown in
Figure 1, the default system information emulated in Kippo
is hard-coded so that it prints out in two ways: (i) Linux
(line 6); or (ii) Linux (hostname) 2.6.26-2-686 #1 SMP Wed
Nov 4 20:45:37 UTC 2009 i686 GNU/Linux (line 4). Thus,

Table 1: Overlapping services of honeypots.

Honeypot | Level of Interaction Hf‘i‘(gld(gls%crv;%P
Dionaea [3 Low-Interaction v v
Valhala [11 Low-Interaction v v
Glastopf [4 Low-Interaction v
HIHIT [25 High-Interaction v
Kojoney [9 Low-Interaction v

Kippo [7 Low-Interaction v

Honssh [5 High-Interaction v

this timestamp in (ii) is a strong indicator of Kippo. An-
other SSH honeypot named Kojoney [9] uses a timestamp
generated at installation time as shown in Figure 2. Even
though the timestamp is not hardcoded, attackers can eas-
ily compare the timestamp with the time of attack to detect
Kojoney-based SSH honeypots.

In addition, Holz et al. [18] introduced other techniques
that help attackers detect honeypots by checking for suspi-
cious environments. Because the majority of honeypots run
in virtualized environments, attackers can infer the presence
of honeypots by checking their environmental variables. For
example, user-mode Linux and physical device information
(video card or network interface card) are used to identify
virtual environments of honeypots.

2.2 Coarse-grained Data Control in Honeynet

A honeynet is a network of honeypots that is intended
to attract as many attackers as possible to collect data and
learn about the patterns, behaviors, and tactics of attack-
ers [2, 28]. The third generation (Gen-11I) honeynet [16, 23]
adopts a customized firewall called honeywall to realize two
important honeynet functionalities: data control and data
capture.

e Data control: honeywall runs in layer-2 bridge mode
to enable transparent monitoring of network traffic
without revealing its presence. More importantly, it
is used to contain the attacker’s actions against exter-
nal networks. Of particular worry is Denial of Service
attacks, so honeywall limits the outbound connections
that are generated from compromised honeypots.

e Data capture: to capture malicious payloads and
behaviors, Gen-III honeynet integrates built-in logging
tools and IDS utilities such as iptables [27], snort [10],
and sebek [8].

However, the layer-2 bridge in Gen-III honeynet is not suf-
ficient to dynamically convey data to honeypots where it can
properly be handled. A set of honeypots offering the same
fake services in the network (e.g., Kippo and Kojoney) need
to receive the same copy of relevant packets to maximize the
use of them while existing honeywall cannot support those
architecture. As shown in Table 1, there exist various hon-
eypots that emulate the same service in terms of SSH and
HTTP (web) services. In particular, when we put a low-
interaction honeypot and a high-interaction honeypot to-
gether, which is categorized by different level of interaction,
in the network, determining the flow path of data for dis-
tribution becomes more complex. Because low-interaction
honeypots are usually effective in only the early stage of
attacks, in-depth data collection are mostly performed by
high-interaction honeypots.

There are few efforts to address this issue such as Honey-
brid [6]. To facilitate the use of both honeypots, Honeybrid
forwards initial attack traffic to low-interaction honeypot
and migrates the connection to a high-interaction honeypot
if needed. However, this approach does not fully utilize both
honeypots since it allows only one connection at a time, and
it would not work if the pair of honeypots consists of low-
interaction (or high-interaction) honeypots.

Moreover, Gen-III honeynet is only concerned about con-
taining the outbound traffic, however an attack is also likely
to be dangerous to internal network. If a compromised hon-
eypot attempts to infect another honeypot in the same net-
work, honeywall cannot provide protection because mali-
cious traffic is not destined to the external network.

3. HoNEYMix ARCHITECTURE

In this Section we illustrate the five core components of
HONEYMIX in detail. In particular, we focus on how HON-
EYMIX achieves better data control than existing Gen-III
honeynet using Software-defined Networking (SDN).

3.1 Overview of HONEYMIX

HONEYMIX is based on traditional Gen-III architecture
that includes a honeywall for controlling network traffic and
capturing malicious data. Behind the honeywall, we con-
struct an SDN-enabled network to accomplish fine-grained
data control. By doing this, we not only take advantage of
Gen-III architecture but also enhance security of honeynet
with the help of SDN.

HONEYMIX architecture consists of five components:

e Response Scrubber takes known fingerprinting tech-
niques into account to reduce the possibility of expo-
sure by scrubbing the response. Recall the example in
Section 2.1, network operators manually define exist-
ing detection mechanisms with their countermeasures
to perform sanitization. Response Scrubber first in-
spects attackers’ requests and selectively scrubs corre-
sponding response that reveals the existence of honey-
pots.

e Forwarding Decision Engine (FDE) creates a “service

map” that represents the services offered by the hon-
eynet (heterogeneity) and overlapping services (redun-
dancy) across honeypots. Based on the service map,
FDE centrally determines where network traffic should
be forwarded and pings each service running on ev-
ery honeypot to ensure consistent and up-to-date hon-
eynet status. To maximize the use of the honeypots,
FDE leverages SDN switches to forward malicious re-
quests to all associated honeypots. To contain the ma-
licious traffic and deliver seamless service, FDE quar-
antines the compromised honeypot and instantiates an
identical honeypot using Network Function Virtualiza-
tion (NFV) technique.

e Connection Selection Engine (CSE) establishes an
end-to-end connection between an attacker and a hon-
eypot. HONEYMIX maintains one connection between
an attacker and SDN switch and a number of connec-
tions between SDN switch (es) and honeypots. CSE
selects one of the connections from the latter area and
pipes it to the connection of the former area. Be-
cause HONEYMIX basically breaks end-to-end connec-
tion, rewriting several header fields such as SEQ/ACK

Y

HoneyMix-enabled Controller
- - Honeypot A
Response IFERETEE Cogecho Behavior (ssh)
Decision Selection -
Scrubber - . Learner S
Engine Engine e
= n &7
\ P RS
@ con selection™, N2
,,,,,,,,,,,,,, \ - @
® service mapping @ Honeypot B
, . (ssh&http)
~ 2 859
- >Z L@ <
© reply U
SDN switch(es) Honeypot C
Attacker @ (http)

Figure 3: HoneyMix Architecture.

and checksums is necessary. Behavior Learner is re-
sponsible for computing weights, which CSE uses to
select the connection.

e Behavior Learner computes a weight for each con-
nection between SDN switch(es) and honeypots. This
weight acts as a score that indicates the activity of a
specific attacker’s connection. Based on the duration
time (0t) of the active connection and the frequency
of modification (#n) counted by Response Scrubber,
this module assigns a weight to each connection. The
longer the connection continues and the fewer modi-
fications are made, the higher the connection weight
has.

e SDN switch(es) connects with HONEYMixX-enabled con-
troller to receive an instruction for steering data flow
and modifying network traffic in flight. SDN switch
can dynamically quarantine a compromised honeypot
and establish a new data stream for the newly instanti-
ated honeypot using Network Function Virtualization
(NFV [17, 32]). The switch is mainly controlled by
FDE.

To illustrate how HONEYMIX works, we walk through a
use case as shown in Figure 3. When an attacker initiates a
connection, HONEYMIX inspects the IP addresses and port
numbers to decide which services are associated with the
connection. If the connection attempt is destined to an SSH
service (default port: 22), FDE searches valid honeypots in
the network using the service map and installs forwarding
rules into corresponding SDN switches. At the same time,
CSE establishes a connection with an attacker on behalf
of honeypots. Upon a successful handshake, CSE creates
multiple connections with relevant honeypots. HONEYMIix
performs selective traffic distribution using group communi-
cation (multicast). The conveyed request will trigger hon-
eypots to generate multiple responses. Behavior Learner re-
turns the weight of each connection so that CSE will choose
one of them and pipeline it to the connection which is estab-
lished by FDE. If Response Scrubber detects the attempt of
fingerprinting, it sanitizes the response to make sure there
exists no clear evidence that indicates the system (or the
service) is emulated.

HoONEYMIX architecture has several strengths in data con-
trol when compared to the traditional Gen-III architecture.
First, every honeypot that offers the same service can receive

\ honeypot,: service,, services

Host

[honeypot,: , service,

A

\ honeypots: service,, service,, service;

[honeypot,: , servicey |

Host \ honeypots: services, serviceg, service; \

Host [honeypots: service,,

, service; |

C [honeypot,: service;

B \ honeypots: services, services \

[honeypot,;: service, |

Figure 4: Heterogeneous and Redundant Service Distribution in Honeynet.

malicious traffic by means of multicast while only one hon-
eypot can be accessed at any given time in the traditional
honeynet. This help us maximize the use of multiple hon-
eypots in the network. Second, it dynamically selects the
connection to send back with the most desirable response.
This response, of course, is immune to known fingerprinting
techniques when it is delivered to attackers (thanks to Re-
sponse Scrubber). Third, SDN-enabled network can realize
flexible incident response by isolating a compromised hon-
eypot. With the combination of NFV and SDN, HONEYMI1x
also activates a new honeypot and dynamically enable data
communication to deliver seamless service. In addition to
that, network reconfiguration techniques such as Moving
Target Defense (MTD [20]) are also possible in HONEYMIX
architecture. Section 4.3 discusses this issue in detail.

3.2 Centralized Data Control
3.21 Network Rule Computation

Hosting honeypots in honeynet requires significant man-
ual configuration (e.g., adding ACL and routing rules). In
particular, honeypots co-existing on the same host may offer
a set of redundant services. As shown in Figure 4, we con-
sider a honeynet that consists of three hosts, running nine
honeypots with seven vulnerable services' in total. Each
honeypot may emulate multiple services (heterogeneity). In
addition, several services are necessarily redundant (redun-
dancy) because the number of services is less than the num-
ber of honeypots. For example, honeypot; provides two ser-
vices (servicei, services) and service; is provided by two
honeypots (honeypoti, honeypots) on Host A.

Due to the heterogeneity and redundancy of provided ser-
vices, generating network rules needs to consider the rela-
tions among host, honeypot, and service. We formalize this
problem using aforementioned elements as follows:

e HN = {hi,ha, -+ ,h} is a set of hosts in the hon-
eynet;

e HP = {hpi,hpa, - ,hpm} is a set of honeypots in the
honeynet;

e SVC = {svey, sve, -
vices in the honeynet;

° Fl;” = (rhi,rha, - ,rhm) is an m-dimensional vector
that corresponds to running honeypots on a specific
host h;. 7Thm, equals to ‘1’ when hp,, is installed on
host h;, otherwise ‘0’;

7svcn} is a set of provided ser-

. ghpm = (as1,as2, - 7asn> is an n-dimensional vector
that represents active services on a particular honey-
pot hp,. asp equals to ‘1’ when swvc, is active on
honeypot hp.,, otherwise ‘0’;

'Here, a service roughly means any type of program which
is occupying a specific network port to provide a communi-
cation channel.

e SM is the ‘service map’ constructed in an (m x n)
matrix form in which each row corresponds to Shp,,

Shpss -+, and Shp,, -

With H, n, and SM, we first compute service distribution
@hk on a host hi such that 1 < k <.

SDn, =y, - SM (1)

@hk is an n-dimensional vector that shows heterogeneity
and redundancy of services on hy. For example, the list of
honeypots on Host A in Figure 4 is H,, = (1,1,1,0,0,0,0,0,0).
SM would be as below:

rnm o0 1 0 0 0 07
0101000
1 0 01 001
01 10000
SM=10 0 0 0 1 1 1
0010100
10 00 0 00O
1 1.0 0 0 01
10 01 0 0 0 0J

Therefore, S@hA = ﬁhA -SM = (2,1,1,2,0,0,1) refers to
the distribution of redundant services on Host A. We next
compute entire service distribution (SDH) in honeynet via

the addition of @h” ‘@hw -+, and SDy,.
l
SDH = 5Dy, (2)
k=1

Therefore, entire service distribution in honeynet (Figure 4)
is SDH = (4,3,4,2,2,1,3). Note that 5D
computed by a sum of row vectors of SM.
Based on above observations, Forwarding Decision Engine
(FDE) translates the entire service distribution (SDH) into
corresponding network rules. FDE generates network rules
for each service and assigns different port numbers to differ-
entiate redundant services on the same host if necessary.

3.2.2 Incident Response

For the best use of the centralized architecture of HON-
EYMIX, we detect abnormalities in honeypots and reactively
cope with incidents. HONEYMIX takes advantage of Gen-III
architecture that only limits a large volume of outbound
traffic (rate limiting). In addition to this, we dynamically
re-configure network rules to quarantine a compromised hon-
eypot by leveraging the programmability of SDN. Based on
the logs collected from honeywall, FDE in HONEYMIX re-
moves existing network rules associated with the compro-
mised honeypot and installs a new rule to block outbound
traffic from it. However, existing services provided by the
compromised honeypot would remain damaged until we fin-

can also be

ish the investigation (e.g., forensic) and recover the honey-
pot.

To remedy this limitation, HONEYMIX embraces network
function virtualization (NFV) technique. Some efforts [26,
13] to build existing honeypots into a set of virtual instances
would also help us realize this approach. HONEYMIX period-
ically snapshots each honeypot, and dynamically activates it
when an infected honeypot is detected. In such a way, HON-
EYMIX ensures that every service in the network is always
up and running.

3.3 Dynamic Connection Selection

To realize the architecture of HONEYMIX, the importance
of connection selection in SDN switch(es)-honeypots area
cannot be stressed enough. However there exist many kinds
of obstacles in enabling this. First, dynamically hopping one
connection to another essentially breaks end-to-end connec-
tion between an attacker and a particular service. Mod-
ification of several packet headers, especially in the TCP
protocol, must be considered (e.g., rewriting of SEQ/ACK
numbers). Moreover, this may bring new chances for attack-
ers to fingerprint the existence of NAT functions by checking
RTT delays. Second, selecting the most desirable connection
that could encourage attackers to launch subsequent attacks
is not trivial. Because there exists no clue to judge about
the suitability of connections, we need to develop a set of cri-
teria to evaluate them in a reasonable way. Third, choosing
the right time for connection selection is also challenging.
For example, we do not want to transfer the connection in
the middle of transmitting a big file.

To accommodate the aforementioned challenges, we de-
vise Connection Selection Engine (CSE) as a core building
block for connection selection. To enable seamless connec-
tion between an attacker and an emulated service in honey-
pot, CSE leverages existing SDN features that allows us to
perform network address translation (NAT). For data trans-
mission over TCP protocol, HONEYMIX maintains the state
tracking table in CSE that keeps track of sequence (SEQ)
and acknowledgement (ACK) numbers of connections. In
this table, CSE also inserts additional information for the
higher layers in the OSI reference model to handle a lot of
nonce which are dynamically generated by a specific service.
For example, HT'TP service independently keeps cookie, ref-
erer, and authorization information to maintain the state of
users. Moreover, CSE records a set of key-pairs that are
used for encrypting/decrypting messages for SSH/HTTPS
service. Some additional header fields such as TCP check-
sum field are dynamically updated by CSE.

As discussed in Section 2.1, HONEYMIX might circumvent
existing fingerprinting techniques just by hopping one con-
nection to another. To achieve this, selecting the most real-
istic and desirable connection from multiple connections is
critical in building HONEYMIX. Note that Response Scrub-
ber module is also provisioning partial remedy for this in an
ad-hoc manner by fixing apparent indicators, but we want
to even avoid unknown fingerprinting techniques by dynam-
ically hopping connections.

Behavior Learner module in HONEYMIX determines the
weight of each connection based on two criteria: (1) the
duration time (dt) of a connection and (2) the number of
modifications (#n) made by Response Scrubber. To account
for attackers’ duration of session, the module measures con-
tinuing time of an active connection (dts). It next obtains

the modification ratio which is the number of unsanitized
response (#N — #n) divided by the number of successful
responses (#N), where #n is the number of modifications
performed by Response Scrubber. Based on these two crite-
ria, the weight of a connection a (W,) is computed as below:

N —
e ©

We add a threshold (¢s) to prioritize a connection for the
quality of service.

Wa =ts - ta -

4. RELATED WORK AND DISCUSSION
4.1 Software-defined Networking (SDN)

SDN is an emerging network paradigm that separates the
control plane from the data plane [24]. Legacy network de-
vices embed complex control logics to process network traffic
whereas SDN switches only perform simple “match-action”
based processing. By simplifying the data plane, SDN ab-
stracts the control plane and consolidates those control logic
into a centralized controller. Because SDN enables logically
centralized network environment, SDN supports significant
programmability and flexibility that could help improve the
security of honeynet.

As the prevalent and widely adopted SDN protocol, Open-
Flow [12] realizes such an SDN paradigm. To dynamically
program network traffic, the OpenFlow protocol supports
“Set-Field” operation in the data plane that allows us to
rewrite packet headers. Therefore, OpenFlow-enabled net-
work implements network address translation (NAT) fea-
ture without employing additional network box. HONEYMIX
makes the best use of OpenFlow-enabled network for real-
izing connection selection, which helps build more flexible
and robust honeynet.

4.2 Honeynet Architecture

The first generation (Gen-I) of honeynet, which was de-
vised in 1999 [28], employs a firewall that mainly performs
data control at OSI layer-3. Although Gen-I architecture
successfully proved its ability in collecting attacks, it can be
easily detected by attackers. It could not properly handle
outgoing traffic either. The cornerstone of the second gener-
ation (Gen-II) and the third generation (Gen-III) honeynets
is a layer-2 based firewall called honeywall. Honeywall has
been devised to enable transparent network monitoring by
provisioning layer-2 bridging, which is difficult for attackers
to detect. Gen-II and Gen-III have the same architecture
except several additional functionalities [13]. Having Gen-II
components as the basis, Gen-III utilizes honeypot monitor-
ing tools (e.g., sebek [8]) to check abnormalities and imple-
ments easier deployment of the honeywall. As cloud infras-
tructure is widely adopted in today’s networks, deploying
Gen-III honeynet in a virtual environment becomes more
popular since it brings many benefits (e.g., maintenance)
that deployment in a physical machine cannot provide [26].

4.3 Discussion

HONEYMIX uses some ideas that have been presented in
moving target defense (MTD) [15, 31]. To increase uncer-
tainty, MTD adopts several randomization techniques to re-
configure a set of properties of operating systems or network
interfaces [14]. Jafarian et al. [20] proposed to use the SDN
controller to randomize host information (i.e., MAC and IP

addresses) in order not to allow attackers to obtain the real
host information. Panos et al. [21] also proposed other ran-
domization mechanisms to hide service version and OSes by
utilizing an SDN application to generate traffic that resem-
bles a fake service or OS.

To prevent honeypot fingerprinting HONEYMIX currently
adopts a connection selection engine that transfers from one
connection to another. This scheme helps increase anonymity
of existing honeypots by changing active connections. More-
over, Response Scrubber is designed to sanitize specific pay-
loads that reveal information of honeypots. HONEYMIX
could adopt aforementioned MTD techniques to further min-
imize the possibility of exposing network infrastructure (OS,
service, and host). For example, random host mutation
techniques introduced in MTD can also be considered in
HoNEvYMix-enabled controller to hide honeypots. In ad-
dition, we may consider to generate virtual IP and MAC
addresses to dynamically create corresponding DNS infor-
mation to hide our network configurations.

5. CONCLUSION

In this paper, we introduced HONEYMIX architecture along
with its five components to build SDN-enabled intelligent
honeynet. To defeat existing honeypot fingerprinting tech-
niques, HONEYMIX dynamically selects the most desirable
connection among multiple connections and reactively san-
itizes the response if it contains a known indicator of hon-
eypots. To fix coarse-grained data control in traditional
Gen-III honeynet architecture, HONEYMIX centrally com-
putes service distribution in the network to enable fine-
grained data control and deploys corresponding rules via
SDN switches. Moreover, HONEYMIX conducts a security
incident response including quarantine and recovery using
SDN and NFV. We are currently implementing HONEYMIX
and planning to evaluate the architecture in real-world de-
ployments.

Acknowledgments

This work was partially supported by the grants from Center
for Cybersecurity and Digital Forensics at ASU.

6. REFERENCES
[1] Black Hat USA 2015 - Breaking Honeypots For Fun And Profit.
https://www.youtube.com/watch?v=Pjvr25IMKSY.
[2] Blogs|The Honeynet Project. https://www.honeynet.org/.
[3] Dionaea - carnivore. https://github.com/rep/dionaea.
[4] Glastopf Honeypot Project Page. http://glastopf.org/.
[5] Honssh Honeypot. https://github.com/tnich/honssh.
[6] Hybrid Honeypot Framework.
http://honeybrid.sourceforge.net/.
[7] Kippo SSH Honeypot. https://github.com/desaster/kippo.
[8] Know Your Enemy: Sebek (A kernel based data capture tool).
http://old.honeynet.org/papers/sebek.pdf.
[9

Kojoney2 SSH Honeypot.

https://github.com/madirish/kojoney2.

[10] Snort.Org. https://www.snort.org/.

[11] Valhalahoneypot Honeypot.
http://sourceforge.net/projects/valhalahoneypot/.

[12] OpenFlow Switch Specification Version 1.5.1 (Protocol version
0x06), December, 2014. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-switch-v1.5.1.pdf.

[13] F. H. Abbasi and R. Harris. Experiences with a generation iii

virtual honeynet. In Telecommunication Networks and

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]
(27]
(28]

(29]

(30]

(31]

(32]

Applications Conference (ATNAC), 2009 Australasian, pages
1-6. IEEE, 2009.

E. Al-Shaer. Toward network configuration randomization for
moving target defense. In Moving Target Defense, pages
153-159. Springer, 2011.

M. Carvalho and R. Ford. Moving-target defenses for computer
networks. IEEE Security & Privacy, (2):73-76, 2014.

M. Dornseif, F. C. Freiling, N. Gedicke, and T. Holz. Design
and implementation of the honey-dvd. In Information
Assurance Workshop, 2006 IEEE, pages 231-238. IEEE, 2006.
R. Guerzoni et al. Network functions virtualisation: an
introduction, benefits, enablers, challenges and call for action,
introductory white paper. In SDN and OpenFlow World
Congress, 2012.

T. Holz and F. Raynal. Detecting honeypots and other
suspicious environments. In Information Assurance Workshop,
2005. IAW’05. Proceedings from the Sizth Annual IEEE
SMC, pages 29-36. IEEE, 2005.

J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random
host mutation: transparent moving target defense using
software defined networking. In Proceedings of the first
workshop on Hot topics in software defined networks, pages
127-132. ACM, 2012.

J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random
host mutation: transparent moving target defense using
software defined networking. In Proceedings of ACM
SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN’12), pages 127-132. ACM, 2012.

P. Kampanakis, H. Perros, and T. Beyene. Sdn-based solutions
for moving target defense network protection. In A World of
Wireless, Mobile and Multimedia Networks (WoWMoM),
2014 IEEE 15th International Symposium on, pages 1-6.
IEEE, 2014.

N. Krawetz. Anti-honeypot technology. Security € Privacy,
IEEE, 2(1):76-79, 2004.

J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver. The
use of honeynets to detect exploited systems across large
enterprise networks. In Information Assurance Workshop,
2003. IEEE Systems, Man and Cybernetics Society, pages
92-99. IEEE, 2003.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69-74, 2008.

M. Mueter, F. Freiling, T. Holz, and J. Matthews. A generic
toolkit for converting web applications into high-interaction
honeypots. University of Mannheim, 280, 2008.

N. Provos et al. A virtual honeypot framework. In USENIX
Security Symposium, volume 173, 2004.

M. Rash. Linuxz Firewalls: Attack Detection and Response
with iptables, psad, and fwsnort. No Starch Press, 2007.

L. Spitzner. The honeynet project: Trapping the hackers. IEEE
Security & Privacy, (2):15-23, 2003.

L. Spitzner. Honeypots: Catching the insider threat. In
Computer Security Applications Conference, 2003.
Proceedings. 19th Annual, pages 170-179. IEEE, 2003.

D. Watson and J. Riden. The honeynet project: Data collection
tools, infrastructure, archives and analysis. In WOMBAT
Workshop on Information Security Threats Data Collection
and Sharing, pages 24-30. IEEE, 2008.

R. Zhuang, S. A. DeLoach, and X. Ou. Towards a theory of
moving target defense. In Proceedings of the First ACM
Workshop on Moving Target Defense, pages 31-40. ACM,
2014.

M. Zimmerman, D. Allan, M. Cohn, N. Damouny, C. Kolias,
J. Maguire, S. Manning, D. McDysan, E. Roch, and

M. Shirazipour. Openflow-enabled sdn and network functions
virtualization. Solution Brief, ONF, Solution Brief
sbsdn-nvf-solution. pdf, 2014.

