
iCORE: Continuous and Proactive Extrospection on
Multi-core IoT Devices

Penghui Zhang
Arizona State University
Penghui.Zhang@asu.edu

Haehyun Cho
Arizona State University

haehyun@asu.edu

Ziming Zhao
Rochester Institute of Technology

zhao@mail.rit.edu

Adam Doupé
Arizona State University

doupe@asu.edu

Gail-Joon Ahn
Arizona State University

Samsung Research
gahn@asu.edu

gailjoon.ahn@samsung.com

ABSTRACT
In this paper, we present ICORE, a novel continuous and proactive
extrospection system with high visibility on IoT devices deploying
multi-core ARM platforms. Dedicated cores named Isolated Cores
are configured to stay in the TrustZone secure world upon system
boot to perform monitoring functionalities to extrospect static normal
world kernel memory area proactively, continuously, and stealthily.
Different from the existing TrustZone paradigm, in which secure
world serves as the slave of the normal world, ICORE makes the
secure world play a master role. Therefore, ICORE remains stealthy
and proactive to perform monitoring functionalities. The evalua-
tion results show that ICORE is effective and imposes negligible
performance degradation using the SPEC CPU2017 benchmark.

CCS CONCEPTS
• Security and privacy → Embedded systems security; Trusted
computing;

KEYWORDS
ARM TrustZone, Extrospection, CPU isolation

ACM Reference Format:
Penghui Zhang, Haehyun Cho, Ziming Zhao, Adam Doupé, and Gail-Joon
Ahn. 2019. iCORE: Continuous and Proactive Extrospection on Multi-core
IoT Devices. In The 34th ACM/SIGAPP Symposium on Applied Computing
(SAC ’19), April 8–12, 2019, Limassol, Cyprus. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3297280.3297364

1 INTRODUCTION
To protect OS kernels of IoT devices from potential attacks, two
classes of monitoring mechanisms were proposed [17]. First, "in-
the-box" approaches, refer to the security tools that reside in the
OS kernel. Second, "out-of-the-box" approaches, are the tools who
stay outside of the kernel. However, both of the mechanisms have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297364

limitations. For example, "in-the-box" security tools can be easily
compromised if the OS kernel is under attacker’s control. Also,
"out-of-the-box" tools rely on vulnerable hypervisors and external
hardware components. The shortcomings make it difficult to keep
the security tools safe or to reduce the cost of virtualization and
additional hardware deployment.

Recently, hardware isolated execution environments, such as
ARM TrustZone [30], AMD SVM [1], and Intel TXT [15], were
proposed to provide a trusted environment for secure execution
outside of the normal execution environment. Among the isolated
architectures, ARM TrustZone is exploited most on IoT devices [42].
In the existing ARM TrustZone paradigm, the secure world is de-
signed as a slave of the normal world, because it only executes the
operations that the normal world requests. This architecture facili-
ties the researchers to develop security tools that reside outside of
the monitored system, such as in TZ-RKP [6] and SPROBES [13].
However, to implement such security tools, the developers have
to make invasive changes in the normal world OS kernel to inter-
rupt certain functionalities. Besides, these methodologies burden the
normal world OS kernel by frequently performing a world switch.
Additionally, due to the traditional relationship between two worlds,
the functionalities of the security tools can be never invoked if the
attacker who compromises the normal world chooses not to. There-
fore, IoT devices still encounter with potential attacks even though
such security tools reside.

In this paper, we present iCORE, a novel continuous and proactive
extrospection system with high visibility on IoT devices deploying
multi-core ARM platforms exploiting ARM TrustZone extensions,
to overcome the aforementioned limitations of current security tools.
Dedicated cores named Isolated Cores are assigned to the secure
world in the full power cycle starting from the system booting period
to proactively, continuously, and stealthily extrospect the normal
world. Secure boot procedure is deployed to help ensure the initial-
ization of iCORE, which, in turn, provides a small trust computing
base (TCB). The implementation of iCORE does not require any
changes on the normal world operating system. Moreover, iCORE

ameliorates the traditional master-normal-world and slave-secure-
world concept by making the secure world play a role as a master of
the system. Therefore, iCORE can execute its functionalities inde-
pendently even if the normal world is compromised by an attacker.

iCORE is designed as an integrity monitor with the attributes of
continuousness, stealthiness, proaction, and high visibility. First,

https://doi.org/10.1145/3297280.3297364
https://doi.org/10.1145/3297280.3297364


SAC ’19, April 8–12, 2019, Limassol, Cyprus Penghui Zhang, Haehyun Cho, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn

continuousness allows iCORE to detect any malicious modifica-
tions in time when monitoring the normal world operating system.
Event-driven monitoring methods, such as [6, 13, 20, 29], are easy
to implement, but malicious operations cannot be detected or re-
sponded if certain events do not occur. Second, iCORE is staying
and operating the monitoring functionalities in the secure world.
Therefore, attackers in the normal world cannot detect its existence.
Third, iCORE is out of the control of the normal world, hence it can
provide proactive and independent monitoring functionalities over
the normal world. Last, the high visibility is brought by the design
of ARM TrustZone architecture that the secure world where iCORE

resides can access all the resources of the normal world with the
highest privilege.

There are several challenges in designing iCORE. First, all cores
are initialized with secure boot procedure to have the integrity of
memory protected. During the booting procedure, the integrity of
system images is protected stage by stage from malicious modifica-
tion. Therefore, to deploy iCORE in the secure world, we need to
prevent dedicated cores from entering the normal world. Second, in
the traditional TrustZone paradigm, the secure world performs as a
slave of the normal world to execute certain functionalities as the
normal world requires. Instead, iCORE, which stays in the secure
world, should seek the self-decision-making power to execute the op-
erations by itself, not from the normal world. Third, the secure world
has access to the normal world memory using physical address after
memory registration, but the processes in the normal world exploit
virtual addresses to acquire memory data [3]; since the normal world
cannot be trusted from iCORE’s point of view while page tables from
the normal world are used to convert virtual addresses to physical
ones, iCORE has to develop its one methodology to translate the
addresses.

The contributions of this paper are as follows:

• We analyze and discuss the limitations of current monitoring
and protection mechanisms on IoT devices. The limitations
include the security of proposed tools, high cost to deploy,
the requirement of manual effort in implementation, and low
performance of the system.
• We introduce iCORE, a novel proactive and continuous extro-

spection with high visibility for IoT devices based on multi-
core ARM platforms exploiting ARM TrustZone extensions.
iCORE overturns the traditional master-normal-world and
slave-secure-world paradigm. iCORE does not require any
changes on neither the normal world or the secure world OS.
• We implement and evaluate iCORE. The evaluation results

show that a system with iCORE can execute operations with
negligible overhead.

2 BACKGROUND
In this section, we present different monitoring mechanisms and the
ARM TrustZone architecture.

2.1 Monitoring Mechanisms
2.1.1 In-the-box vs Out-of-the-box. To prevent and detect po-
tential attacks on OS kernels, researchers developed two categories
of approaches, namely "in-the-box" approach and "out-of-the-box"
approach [17]. "In-the-box" approach utilizes system software where

the protection and monitoring tools reside in the monitored system.
One instance is kGuard [18], which is a compiler plug-in to reinforce
the kernel to detect return-to-user attacks. Such approaches have
been proved less practical because the security tools can be disabled
or even eliminated if the OS kernel is compromised [20]. Based
on this observation, the research community has realized that the
monitoring and protection tools should be correctly isolated from the
monitored system so that attacks on the monitored system will not
affect the security tools [6]. As a result, "out-of-the-box" approach
was proposed. "Out-of-the-box" approaches, such as [6, 13, 20, 29],
purport to deploy security tools outside of the monitored system.
The "out-of-the-box" approaches can be further categorized into
hypervisor-assisted and hardware-assisted approaches based on the
components that the security tools reside and take advantage of [20].

2.1.2 Hypervisor-assisted vs Hardware-assisted. The essence
of hypervisor-assisted approaches is to utilize virtualization to pro-
vide security tools with a higher-privileged and isolated execution
environment. Residing in a hypervisor or a virtual machine monitor
(VMM), which runs on host’s hardware to control the hardware and
guest operating systems, the security tools such as [16, 22, 33, 36,
39] can inspect the monitored operating system along with its inter-
action with hardware resources, and thus can detect potential attacks.
However, the hypervisor itself is fragile because it also contains large
code base bringing countless vulnerabilities, such as [25, 26, 28].
Although sacrificing the whole hypervisor as a security tool can
avoid the hypervisor being compromised, it is an unrealistic way
because this idea will block the virtualization functionalities [13].
Furthermore, the high-cost of virtualization on IoT devices makes it
difficult to deploy hypervisor-assisted protection approaches [6].

The hardware-assisted approach is also prevalent, where researchers
develop their security tools with the help of isolated hardware. Some
protection methodologies are designed to monitor kernel objects
using external hardware [20, 29], which increase the cost of se-
curity tool deployment. Since 2004, new isolated hardware archi-
tectures, such as ARM TrustZone [30], AMD SVM [1], and Intel
TXT [15], were proposed to provide a trusted area for secure exe-
cutions. The essence of the isolated architectures is to physically
segment the system resources into two worlds, named as the normal
world (also as rich execution environment, REE) for conventional
processing, and the secure world (also as trusted execution environ-
ment, TEE) for secure processing, respectively. This design guar-
antees that the security-sensitive data can be properly protected in
the secure world [14]. With the assist of isolated hardware architec-
tures, researchers have been transferring their focus to developing
security tools based on the trusted execution environment. Among
the security tools based on TEE, TZ-RKP [6] and SPROBES [13]
are recent examples, which exploit the secure world to deploy the
security tools. Both of the security tools protect the Linux kernel
code area by trapping the normal world page table update operations
and judging in the secure world if the operation is legitimate.

However, the execution time of workload increases due to per-
forming world switch each time when a page table update occurs.
In addition, modifications on both the normal and secure world OS
before implementing the security tools are needed to interrupt the



iCORE: Continuous and Proactive Extrospection on Multi-core IoT Devices SAC ’19, April 8–12, 2019, Limassol, Cyprus

page table updates. Also, the attackers who have successfully com-
promised the normal world can opt out the functionalities of the
secure world.

2.1.3 Event-driven vs Continuous. Lunt et al. [23] proposed
a prototype real-time intrusion-detection expert system (IDES). In
IDES, discrete and continuous measures were discussed. A discrete
measure is used on a finite and unordered set of range of values,
while a continuous measure is deployed for an infinite and continu-
ous set of range of values.

Some of the modern monitoring and protection mechanisms im-
plement a discrete variant, event-driven, aiming to detect after cer-
tain events happen. Vigilare [29], Ki-Mon [20], TZ-RKP [6], and
SPROBES [6] use different techniques to implement their security
tools, but they all leverage the concept of event-driven.

Other techniques, such as HookSafe [44] and SecVisor [37], aim
to protect the kernel code continuously, which means the protection
methods keep the integrity of the kernel not affected by events taking
place.

2.2 ARM TrustZone Architecture
2.2.1 Overview of TrustZone. ARM TrustZone [30] is designed
as a hardware-assisted security extension to ARM architecture, such
as ARM Cortex-A and Cortex-M. ARM TrustZone physically parti-
tions the system into two worlds, namely the normal world and the
secure world. Each world has its own banked registers and memory
which are running on the world-specific operating systems and ap-
plications. Trusted applications (TA) can execute secure processes
in the secure world. Client applications (CA) are running in the
normal world to operate conventional processes. Shared memory
and general registers are used to communicate between the secure
world and the normal world. Processes that are running in the nor-
mal world must call the smc [4] instruction to trigger one of the
services in the secure world in order to request the security-sensitive
data, and the secure world will send the data back to the normal
world if the request is accepted. The services that execute in the
secure world, however, can access the resources in the normal world
without permission from the normal world.

The secure world is proposed to help the normal world operate
security-sensitive executions with high privileges to protect the se-
cure data from being attacked and leaked. So it only executes the
functionalities that the normal world requests. Hence, the secure
world by the default design plays a role as a slave of the normal
world even with the highest privileges among the whole system.
Take comparing Apple Touch ID [43] as an example. The normal
world calls smc instruction along with the fingerprint collected from
the sensor to request a Touch ID comparison in the secure world.
The secure world then executes certain functionalities and returns
the result back to the normal world. However, it cannot invoke such
operation without the request of the normal world. From this per-
spective, the functionalities of the secure world will not be executed
if the normal world never calls them.

2.2.2 Core Initialization with Secure Boot. ARM Trusted Firmware
(ARM-TF) is one of the major booters that is designed to initialize
the ARM cores with TrustZone extension. Both cold boot, where
the system is switched on physically, and warm boot, where cores

have already been initialized, should go to ARM-TF reset entry
point. Afterwards, different booting procedures step into their own
initialization sequence.

For the cold boot, the initialization of hardware, including core,
platform, and architecture, is performed first. The primary core,
which is selected when it is released from reset and executes mainly
the cold boot path, starts with the C runtime initialization. And
the other cores, called secondary cores, are placed in a platform-
specific state and wait to be woken up after the primary core finishes
initializing enough functionalities [5].

As for the warm boot procedure, the system goes to the warm boot
entry point to continue the configuring PSCI, platform, architectural,
and generic setup, along with PSCI state maintenance [5].

During the initialization, secure boot procedure is exploited to
protect the integrity of all the secure world software images from
being unauthorized or illegally modified, applying cryptographic
checks to every stage of the secure world booting procedure [2]. For
example, a trusted vendor would sign the image that she plans to
execute on the device with her private key and then send the image
along with the signature to this device. The corresponding public
key is stored and protected from being substituted to verify whether
the image has been tampered with and whether it is from the trusted
vendor. The secure boot procedure also exploits the concept of chain
of trust, meaning that starting from the root of trust that located in
on-SoC ROM, every other software component can be verified by
its higher level component before being executed.

2.2.3 Normal World Memory Access from Secure World.
User and kernel processes running in the normal world have their
own private virtual address memory space, which is the contribution
of MMU. When a process in the normal world wants to access the
memory through the virtual address, MMU will convert the virtual
address through translation tables to the corresponding physical
address to access the memory.

Although the secure world can access all the resources in the
normal world, physical addresses are required by the secure world to
access the specific normal world memory. Since there is no function
designed by default to convert the virtual address to the physical
address, we design one which will be discussed in detail in Section 4.
After acquiring the physical address, the secure world can access the
static kernel memory in the normal world directly. In addition, the
static kernel data is linearly mapped in the normal world memory.
Therefore, with the starting and ending physical addresses, the secure
world can load the whole data stored in the static memory area [8].

3 ASSUMPTIONS AND THREAT MODEL
3.1 Assumptions
We assume that iCORE is implemented on IoT devices deploying
multi-core ARM platform with ARM TrustZone extension. We con-
sider the secure world as trusted and the normal world as our monitor-
ing target. Also, we assume that the system will not be compromised
or attacked during the cold boot procedure. To prevent the system
from being tampered during the booting time, ARM secure boot [2]
procedure can be leveraged to initialize the processors in order to
guarantee the integrity of the whole memory area.



SAC ’19, April 8–12, 2019, Limassol, Cyprus Penghui Zhang, Haehyun Cho, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn

!"" !""

#$ #$

%&"'()*+,(

!""

$'-.('/0,(12/#$

345

346

347

8,(9:1/0,(12 $'-.('/0,(12

34;

345

346

$'-.('/0,(12/<*(9=:('

$'-.('/0,(12/<*(9=:('

>#?/<*(9=:('

?,@*A,(/?,2'/B,2'

8,(9:1/B,('+

$'-.('/0,(12

34;

345

346

$'-.('/0,(12/<*(9=:('

$'-.('/0,(12/<*(9=:('

>#?/<*(9=:('

$'-.(*A&/C,,1+

B,('+/D'2*-:A'2/E,(/$'-.(*A&/F+'+

$'-.(*A&/C,,1+

Figure 1: iCORE architecture.

3.2 Threat Model
The normal world OS kernel mainly encounters the threats from
kernel level rootkits. As aforementioned, the normal world OS is
vulnerable and can be compromised any time after the system has
booted [11]. Therefore, kernel-level rootkits can be installed to take
control of and attack the normal world OS. To hide the evidence of
their intrusion, rootkits will tamper with some parts of the OS kernel
such as setting a hook in certain system calls, which reside in the
static kernel memory area.

Furthermore, attackers may notice that some security tools reside
in the normal world OS. To avoid the detection from the security
tools, the rootkits can deploy transient attacks [29], which do not
tamper with the system permanently, in the kernel. By exploiting
transient attacks, rootkits mitigate the permanent modifications on
the kernel memory, which sets a camouflage to cheat on the secu-
rity tools. However, iCORE checks the integrity of the static kernel
memory area of the normal world continuously. Any modification
on the monitored area will be detected. Consequentially, tempo-
rary modifications through transient attacks can still be detected by
iCORE.

4 SYSTEM DESIGN
In this section, we present iCORE, a novel continuous and proactive
extrospection with high visibility on IoT devices to monitor and
detect the integrity of the static kernel memory in the normal world.

Figure 1 illustrates the architecture of iCORE. Dedicated cores
assigned as iCORE for security uses are deployed and running only
in the secure world, meanwhile, the other cores are processing the
conventional workload with the access of both normal and secure
worlds. Security tools of iCORE are residing in exception level EL1
in the secure world OS. With the privilege of EL1, iCORE has the
right to access the normal world kernel memory that has the same
exception level as iCORE. According to our design, iCORE can
access and monitor the static kernel memory of the normal world
continuously and proactively without notifying or getting permission
from the normal world.

In the following subsections, we demonstrate how dedicated cores
are chosen as iCORE and initialized during a modified booting pro-
cedure deployed in the secure world. Meanwhile, cryptographic
checks are applied to each stage of the secure world boot procedure,
pointing to protect the integrity of the secure world image from unau-
thorized and malicious modification. Then, we discuss a mechanism

that iCORE acquires data stored in the static kernel memory region
of the normal world and checks the integrity of the specific memory
area with the acquired data proactively and continuously.

4.1 Initialization of iCORE
Figure 2 shows the flow chart of iCORE’s initialization. The sequence
of core initialization is from the primary core to the secondary cores
and finally to iCORE. When the device is cold booted, the primary
core is first invoked by a trusted booting firmware, for example,
ARM-TF, and initialized in the secure world with exception level
EL3. The primary core executes the boot path in the trusted booting
firmware following such steps: Application Processor Trusted ROM
(Boot Loader Stage 1, BL1), Trusted Boot Firmware (BL2), and
EL3 Runtime Software (BL3). After the initialization of primary
core is finished by the trusted firmware with EL3, the firmware then
switches the control to the secure world OS with EL1 as shown in
Step 1○ to continue the initialization of the primary core. In Step

2○, the secure world OS should switch back to the trusted booting
firmware after it finishes primary core initialization to perform the
world switch operation with smc instruction through the trusted
firmware. After the normal world OS gains the control from the
secure world in Step 3○, the primary core will have its initialization
finalized in the normal world. The process of initializing secondary
cores is similar to that of the primary core. After the primary core
finishes its initialization in the normal world OS, a switch to the
secure world that the trusted booting firmware generates to wake the
secondary cores up, as shown in Step 4○. Secondary cores are also
initialized through the firmware to the secure world OS (Step 5○),
switching the world by the trusted booting firmware (Step 6○), and
eventually to the normal world OS (Step 7○).

The regular cold boot procedure of an ARM multi-core platform
indicates that the initialization of each core goes through the secure
world and the normal world. As discussed in Section 3, the normal
world can be compromised anytime so that the normal world is our
monitoring target and cannot be trusted. To prevent iCORE from
being infected, iCORE should never go to the normal world from
the beginning of the initialization. To achieve this goal, we modify
the boot procedures of iCORE by redirecting the core sequence to
execute the monitoring functions. After the secondary cores finish
the initialization in the normal world, a world switch to the secure
world (Step 8○) occurs to start the initialization of iCORE. iCORE

is first initialized in the trusted booting firmware and then goes to
the secure world OS to continue its booting (Step 9○), as what other
cores do. However, iCORE never switches to the normal world to
finalize the initialization. Instead, it dedicates itself to stay in the
secure world forever by executing security functionalities (Step 10○)
to monitor the normal world kernel memory and to detect potential
malicious modification.

The normal world OS kernel waits for the cores to come online
or time out. For example, when the normal cores switch to the
normal world eventually, the normal world OS detects the normal
cores online within certain time limit and notifies the successful
detection to the system. When the normal world OS tries to detect
iCORE, however, iCORE never returns to the normal world. After the
time exceeds the threshold, the normal world OS stops waiting the
dedicated cores to execute the following operations but informs the



iCORE: Continuous and Proactive Extrospection on Multi-core IoT Devices SAC ’19, April 8–12, 2019, Limassol, Cyprus

!"#$%"&'(%)*

+,-
.%$/0"*&1((0234

52%678%"

!"#$%

+,9
!"#$%"&'(%)*&:!

;

<

=(%68)&'(%)*!"#$%"&'(%)*

+,-
.%$/0"*&1((0234

52%678%"

!"#$%"&'(%)* :!

> ?

+,9

=(%68)&'(%)* :!

+,9

@

&'!()'*+",'-

=(%68)&'(%)*!"#$%"&'(%)*

+,-
.%$/0"*&1((0234

52%678%"

!"#$%"&'(%)* :!

+,9

=(%68)&'(%)* :!

+,9

.-/,01)'*+",'-2

A
B C

D

E

+,9

",03!04,42

%53',26-/3!,0

Figure 2: Core initialization with iCORE.

system during the booting period. Therefore, it does not influence
the normal initialization and execution of the system that iCORE

never returns to the normal world. By now, iCORE officially gets out
of control of the normal world to be able to execute the monitoring
functionalities independently and proactively.

In summary, by initializing and staying only in the secure world,
iCORE can avoid the detection of potential attacks coming from the
normal world. The normal world can still continue its conventional
executions without iCORE coming online.

4.2 Continuous and Proactive Extrospection
To provide continuous and proactive extrospection with high visibil-
ity on the static kernel memory blocks of the normal world, iCORE

needs to access the designated memory area, load the data, and
check the integrity. Figure 3 shows the process of the extrospection
of iCORE.

Though as originally designed in ARM TrustZone the secure
world has the privilege to access all the resources in the normal
world, which facilities iCORE to protect the normal world with high
visibility, two features form an obstacle for iCORE. The first feature
is that the normal world memory is not yet registered in the secure
world, but the secure world can only access registered memory re-
gion. And the other one is that the addresses of kernel memory area
are stored as virtual ones, the secure world, however, exploits the
physical addresses to access the normal world memory. If iCORE

plans to monitor one specific kernel memory region of the normal
world, the corresponding memory region should be properly regis-
tered in the secure world beforehand and the starting and ending
physical addresses must be obtained by converting the virtual ad-
dresses that the normal world use. However, ARM architecture does
not offer any facilities for the secure world to register the normal
world memory or to convert the virtual addresses. Hence, we design
a function for iCORE by traversing a given virtual address on the
normal world translation tables to retrieve the corresponding physi-
cal address. Additionally, we modify the configuration of memory
layout to register the normal world memory in the secure world
before the system boots. The detailed implementation of registering
memory and converting virtual addresses will be discussed later in
Section 5. Afterwards, iCORE can load the data used for integrity
checking from the specific static kernel memory region of the normal
world.iCORE checks the integrity by the following steps. First, when the
normal world OS is waiting for iCORE online during its initializa-
tion, iCORE loads the data from the monitored memory region and

!"#$%&'#()*+$,-!"#$%#&"

'"(

.'&#/01)

233&$44$4

)$*$+,#

-./+%0

1%-2*3#4%-35#2.2%-6 ).,7-.#4%-35#2.2%-6)8*-.5

2.2%-6

'*567

",,.99#:+*

&869+,*3#

"55-.99.9

8&$9

+04+

Figure 3: Extrospection of iCORE.

calculates a hash value of the data, named as pre-hash. Based on
the assumption in Section 3, the attackers cannot compromise the
normal world OS until the system is completely booted. Therefore,
we can trust pre-hash as the root of trust. Also, pre-hash is
stored in the secure world memory that cannot be accessed by the
normal world and any trusted applications because trusted applica-
tions are in EL0, lower privilege than that of iCORE, EL1. Next,
when the normal world OS is ready and the user processes start to
execute, iCORE again accesses the same memory region and retrieve
the hash value, named current-hash. Then iCORE compares
current-hash with pre-hash. If these two values are equal,
it indicates that the integrity of the monitored memory region is
guaranteed. Otherwise, iCORE will report it as tampered memory
area with memory dumped to be further analyzed.

Such extrospection provided by iCORE is continuous. iCORE is
repeatedly computing current-hash of the monitored area and
comparing those two values to guarantee the integrity. Moreover,
the monitoring functionalities of iCORE are proactive. iCORE is
completely running independently without permissions or requests
from the normal world since it has got rid of the control of the normal
world during the initialization.

5 IMPLEMENTATION
We implemented the prototype of iCORE and tested it on a Hikey
LeMaker board, which has 8 ARM Cortex-A53 1.2GHz cores and
2GB of memory. Regarding the software stack of our testing en-
vironment, the secure world side runs OP-TEE version 2.0.0 [31],
combined with ARM-TF [5], while the normal world runs Linux
distribution with kernel version 4.15. we open source the prototype
with the expectation that it will be exploited and extended further by
security researchers 1.

1https://github.com/FormerBuckeye/iCore.git



SAC ’19, April 8–12, 2019, Limassol, Cyprus Penghui Zhang, Haehyun Cho, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn

1 LOCAL_FUNC vector_cpu_on_entry , :
2 ...
3 bl get_core_pos
4 /* begin to select iCORE*/
5 cmp x0, #7
6 beq iCORE_func
7 /* end*/
8 ...
9 smc #0

10 b . /* SMC should not return */
11 END_FUNC vector_cpu_on_entry
12 ...
13 LOCAL_FUNC iCORE_func , :
14 /* execute functionalities of iCORE */
15 b do_extrosepction
16 END_FUNC iCORE_func

Listing 1: Code of core initialization in ICORE.

5.1 Core Initialization
As mentioned earlier in Section 4, all the cores are firstly initial-
ized in the secure world by the ARM-TF and then the secure world
OS, in our case, OP-TEE. Eventually, all the cores are returned
to the normal world to finalize the initialization by the normal
world OS. We analyze the source code of OP-TEE and modify
it to select dedicated cores as iCORE. In OP-TEE source code, Func-
tion vector_cpu_on_entry() in File thread_a64.S is re-
sponsible for switching from the secure world to the normal world
using smc #0 instruction after the core initialization is finished
in the secure world. The detailed iCORE selection procedure we
implement has been shown in Listing 1.

Function get_core_pos() in Line 3 gets the number of the
current core and stores the result to Register x0. Line 5-6 is the
modified code to assign dedicated cores. In our implementation,
we select one secondary core as iCORE from the perspective of
performance efficiency. There are 8 cores in the Hikey LeMaker
board, one primary core numbered as 0 and seven secondary cores
numbered through 1 to 7. We choose the core No.7 as iCORE because
as discussed in Section 4, iCORE will be booted after all normal cores
finish initialization. When core No.7 is initializing, Line 6 forces it to
execute Function iCORE_func() to invoke iCORE functionalities,
instead of executing smc #0 to switch back to the normal world. In
the normal world side, Function _cpu_up() in File cpu.c of the
normal world OS is waiting for core No.7 to switch to the normal
world. After time exceeds the limit, _cpu_up() will only notify
the system that core No.7 fails to come online. Sequentially, the
normal world OS ignores the offline core and continues to execute the
following operations. By now, iCORE loses the control of the normal
world and can perform the monitoring functionalities proactively
and independently. The whole initialization does not require any
changes on the normal world OS, which lighten the workload for
developers to deploy iCORE architecture.

5.2 Memory Acquisition
After iCORE gets initialized and started to execute the functionalities,
the static kernel memory region of the normal should be properly
acquired by iCORE to load data. To make the secure world access the
static kernel memory region of the normal world, as aforementioned

1 static struct map_area bootcfg_memory_map[] =
2 {
3 {
4 .type = MEM_AREA_NSEC_SHM,
5 .pa = DRAM0_BASE, .size = DRAM0_SIZE,
6 .cached = true, .secure = false,
7 .rw = true, .exec = false,
8 },
9 ...

10 }

Listing 2: Memory registration.

in Section 4, two tasks should be resolved. First, the normal world
memory should be correctly registered in the secure world. Second,
the virtual addresses used by the normal world should be converted
to the corresponding physical addresses for the secure world to use.

We conquer the first task by modifying the boot configuration
memory map in the secure world OS. Specifically, the secure world
exploits bootcfg_memory_map to manage the memory layout
provided to the TEE core. bootcfg_memory_map is a structure
type of map_area to record the memory area registered in the
secure world. In this structure, every memory area that the secure
world needs to access is listed along with its type (all types of
memory area have been enumerated in mmu.h), starting physical
address, size, and attribute. Hence, we register the normal world
memory to the secure world by adding the corresponding mem-
ory layout in bootcfg_memory_map. Listing 2 demonstrates
the memory layout that we insert. The type of the memory layout
is MEM_AREA_NSEC_SHM, which represents that the normal world
memory now is registered as non-secure shared RAM between the
normal world and the secure world; the starting physical address
is DRAM0_BASE, which is the base address of the DRAM of the
normal world; the size is DRAM0_SIZE, which is the size of DRAM
of the normal world; and it can be cached, can be read and written,
cannot be executed, and is non-secure.

Afterwards, we should solve the second task. There is no related
instruction or function for the secure world to convert the virtual
address to the physical address by default. In the normal world, one
process accesses the memory by providing the virtual address in its
own private space to MMU, and MMU then looks up the page tables
to calculate the physical address. The secure world has to traverse the
same page tables to convert the virtual address. Hence, we implement
the converting function called va2pa_in_sec() in iCORE before
accessing the memory of the normal world. Specifically, for a given
virtual address in AArch64, the most significant bits determine the
base address of the page table, and then bits [41:29] and [28:16] are
the index of Level 2 and Level 3 page tables to find the corresponding
page table entry level by level. Finally, we combine the bits [47:29]
of the page table entry and the least significant bits of the virtual
address to get the proper physical address.

5.3 Continuous and Proactive Extrospection
Finishing two tasks mentioned above, iCORE has the ability to mon-
itor the normal world kernel and to check its integrity. As the static
data in the normal world kernel memory is consecutively stored,
iCORE can load data in the static memory regions of the normal
world kernel by accessing from the starting to the ending physical



iCORE: Continuous and Proactive Extrospection on Multi-core IoT Devices SAC ’19, April 8–12, 2019, Limassol, Cyprus

addresses. However, iCORE can only obtain the virtual addresses of
the corresponding memory area by analyzing File system.map,
which is generated during the kernel compiling and records the
virtual addresses of symbols used in the normal world kernel. Func-
tion va2pa_in_sec() is then exploited to convert the virtual
addresses to physical addresses to help iCORE access the data.

To measure the integrity of static data and code, first iCORE de-
ploys SHA-1 cryptographic hash algorithm to compute the root of
trust, pre-hash, of the loaded data before the normal world OS
finishes the initialization. The pre-hash is then stored in the se-
cure world memory. Second, when all the processes starts to execute,
iCORE loads the data from the same normal world kernel memory
region and computes the current-hash. Next, iCORE compares
current-hash with pre-hash. The result of two hash-value
comparison will determine whether the static kernel memory of the
normal world has been tampered with.

To provide continuous monitoring functionalities, except the first
step (because pre-hash is the root of trust), others should be
processed repeatedly. iCORE leverages an infinite loop to achieve
the continuous extrospection. Thus, in each loop iCORE can check
the integrity by calculating and comparing the hash values. All the
monitoring procedures are also executed by iCORE independently,
without requesting or getting permission from the normal world,
because the normal world cannot detect the existence of iCORE.
Consequently, iCORE shows continuousness and proactiveness to
detect the malicious modification in the monitored memory areas,
and will not be affected or disabled by the normal world.

6 EVALUATION
After implementing iCORE, we answer the following questions that
may be asked: How effective is iCORE? Can iCORE be detected or
even terminated from the normal world? Losing one core brings a
negative impact on the performance of IoT and mobile devices, can
such a device be qualified to meet the daily requirements?

6.1 Effectiveness of iCORE
To evaluate the effectiveness of iCORE to protect the static kernel
memory area of the normal world against the attacks and vulnerabil-
ities that are probably exploited, we design experiments trying to (1)
tamper the monitored memory area, and (2) terminate iCORE from
the normal world. To experiment the first task, we deploy Loadable
Kernel Module in the normal world attempting to read and write the
monitored static kernel memory area with root privilege. Unsurpris-
ingly, iCORE detects all the modifications on the memory region.
It indicates that iCORE can detect any malicious modification on
the static kernel memory area of the normal world from potential
attacks such as malicious code injection [21] and vulnerabilities that
are exploited to tamper with the static kernel memory such as allow-
ing privileged users to modify a limited range of kernel memory in
syscall interface of bridging [27].

Secondly, to verify that iCORE cannot be detected or disabled
from the normal world, we check the cpuinfo of the normal world
OS that records the CPU information. The content in cpuinfo only
shows the information of CPU 0 to 6. It indicates that the normal
world cannot detect the existence of iCORE and thus it does not

Table 1: Performance overhead when checking different size of
static memory area.

Benchmark Monitoring whole Monitoring specific
application static memory static memory

perlbench 2.28% 1.25%

mcf 3.61% 2.42%

omnetpp 3.14% 2.02%

xalancbmk 12.50% 2.79%

x264 2.38% 0.77%

deepsjeng 1.17% 1.01%

leela 1.92% 0.73%

xz 3.95% 2.64%

Figure 4: Evaluation result in SPEC CPU2017.

provide any methods for attackers in the normal world to detect or
even disable iCORE.

6.2 Performance with iCORE
iCORE may impact the performance of the device by frequently
checking the whole static kernel memory of the normal world. Be-
sides the impact of losing one core, frequent memory access may
influence the speed of workload execution as well. Reading normal
world memory may fill up L2 cache shared among cores and the
data bus between CPUs and memory. Therefore, the data required
by processes in the normal world would be delivered slower than
the original system. We evaluate the performance of the system with
iCORE by checking the whole static kernel memory of the normal
world and by checking a portion of kernel text (code) area to deter-
mine how the impact of iCORE scales when it monitors different
sizes of static kernel memory. According to our analysis, the size of
whole static kernel memory is around 13MB while that of selected
text (code) area is about 12KB.

We evaluate the performance of the normal world OS using the
SPEC CPU2017 to measure the impact of permanently losing one
core to the secure world. Figure 4 represents the evaluation result un-
der 3 situations, a system with 7 cores and iCORE checking the whole
static memory of the normal world, one with 7 cores and iCORE

checking a small portion of the static memory, and the original sys-
tem with 8 cores, in SPEC CPU2017’s 8 benchmarks of intrate
suit. Table 1 shows the performance overhead of the system when
checking a different size of the static kernel memory area of the nor-
mal world. From the evaluation result, iCORE unsurprisingly brings
the overhead on CPU performance of the system because of losing
one core and frequently accessing the memory. When checking the
whole static kernel memory of the normal world, iCORE generates



SAC ’19, April 8–12, 2019, Limassol, Cyprus Penghui Zhang, Haehyun Cho, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn

1.17% (deepsjeng) to 12.50% (xalancbmk) performance overhead
compared with the original system.

According to the analysis of SPEC CPU2017 in [32], bench-
mark xalancbmk has the highest percentage of branch instructions,
over 30%, while the benchmarks omnetpp, leela, and deepsjeng only
have 15% of branch instructions. Besides, xalancbmk consumes
a considerable percentage of their execution time on cache and
memory related operations. This explains why iCORE has a more
overhead fraction on operating xalancbmk: executing this benchmark
application requires much more memory/cache accesses than operat-
ing the other ones; however, the system with iCORE does not provide
as much computation power as the original system does because
it only has 7 cores to process the workload in the benchmark, and
iCORE uses L2 cache lines and data bus between CPU and memory
for the monitoring purpose.

We also evaluate that monitoring smaller portion of static kernel
memory of the normal world, which brings the system less perfor-
mance degradation as shown in Figure 4. The performance overhead
of checking 12KB static memory on xalancbmk is 2.79% compared
with that on the original system. The CPU performance increases,
but not significantly, even though iCORE only checks 0.1% of the
whole static kernel memory of the normal world. One possible rea-
son is that the Linux scheduler helps the system work efficiently by
checking the load balancing of each CPU dynamically and distribut-
ing the routine workload to the low CPU usage core so that the tasks
can be executed as fast as possible.

As a consequence, the system with iCORE, checking even the
whole static kernel memory, can still finish the same workload within
the negligible performance overhead.

7 DISCUSSION AND FUTURE WORK
7.1 Response After Detection
After detecting the malicious modification in the monitored mem-
ory region of the normal world, iCORE should have corresponding
measures to report and analyze the memory area. However, there
exists a semantic gap that iCORE only detects the modification but
has no ability to extract the semantic information such as the current
CPU info, the active processes, or potential hooks on system calls.
iCORE has to get a hand from memory forensic tools [38] developed
to analyze and extract digital artifacts.

Memory forensic tools generally require the memory sample
file, which iCORE can provide. If there are malicious modifications
occurred under the monitoring of iCORE, the normal world memory
can be dumped since iCORE has the ability to access the whole
normal world resources. Afterwards, the dumped memory file will
be sent to memory forensic tools outside the device. We can leverage
one of the memory forensic tools such as Volatility [12]. The memory
forensic tools, then, can analyze the memory sample and extract
semantic-rich information, such as the active process list, potential
hooks on system calls, and a list of opened files by the normal
world OS kernel. Therefore, by means of the memory forensic tools,
the semantic gap between iCORE and the normal world can be
narrowed down. Also, the further analysis after detecting malicious
modifications can be possible.

7.2 Potential Threats Against iCORE
iCORE is designed to detect malicious modifications on the static
kernel memory area of the normal world. However several types of
threats can be exploited to potentially hazard iCORE.

First, during the booting procedure of a system with iCORE, a
threat that the attacker is attempting to modify the kernel image file
may occur. To protect the kernel binary from maliciously tampering,
we implement secure boot procedure [2] on ARM platform that is
mentioned in Section 4. Hence, secure boot procedure guarantees
that iCORE can be booted safely. Once iCORE is booted, the attacker
cannot detect or turn off the functionalities of iCORE, because it is
completely isolated from the monitored system.

Secondly, as we mention in Section 4, to load memory data,
iCORE exploits system.map to get the starting and ending address
of the static kernel memory area of the normal world. Some may con-
cern that the addresses where the static kernel data is stored can be
modified by the attackers so that iCORE cannot work properly with
incorrect addresses. This is avoidable because File system.map is
generated before the system booting. Static kernel data of the normal
world will be loaded according to the file during the initialization of
the system. Before the attacker takes control of the normal world,
iCORE has already gained the physical addresses of the monitored
memory area. Hence, the changes of the addresses do not influence
the correctness of iCORE’s functionalities.

Thirdly, when iCORE detects the malicious modification on the
monitored memory area, the normal world memory can be dumped
for further analysis. However, the normal world RAM could be
tampered again by the attacker to erase the evidence of crimes. To
avoid the situation mentioned above, TrustDump [41] provides an
approach to allow the device user to switch into the secure world
safely when the normal world OS crashes or is compromised in order
to cease the operations in the normal world. Therefore, the normal
world memory cannot be further tampered with and the memory
dumped by iCORE can be trusted.

7.3 Extension of iCORE
Our current design of iCORE checks the static code and data in the
normal world kernel memory. However, the attackers would attempt
to tamper with the dynamic code to make the attacks successful.
Unlike the static code and data, it is much more difficult to check
the integrity of the dynamic data memory region, as the data is
changing all the time when the system is running. It is a challenge
for an integrity check to distinguish between a normal operation
modification and a potential tampering behavior. Petroni et. al [34]
propose an architecture to provide the integrity to dynamic kernel
data using a specification language-based approach. Also, the code-
reuse attacks are popular now which execute the existing code in
the memory instead of code injection to by-pass the integrity check
of security tools. In the future, we will develop iCORE to monitor
the dynamic memory area and protect the normal world from the
code-reuse attacks.

In addition to the integrity check improvement, iCORE will be
able to overcome the semantic gap. As aforementioned, iCORE can
exploit the data read from the static memory region in the normal
world to check the integrity. However, the real meaning of the data
iCORE reads remains unknown, so we can leverage the existing



iCORE: Continuous and Proactive Extrospection on Multi-core IoT Devices SAC ’19, April 8–12, 2019, Limassol, Cyprus

Table 2: Comparison of the related works with iCORE.

Criteria kGuard SIM NOVA Vigilare MIPE TZ-RKP SPROBES SecVisor iCORE[18] [39] [40] [29] [7] [6] [13] [37]

Resides out of the monitored system #         
Provides proactive monitoring    # # # #   

No need for virtualization supports  # #     #  
No need additional hardware    #      

No need to modify monitored system     # # #   
In-time tamper detection # # # # # # # #  

 : satisfying the criteria,#: not satisfying the criteria.

memory forensic tools to extract the semantic-rich info from the
memory dump file. Nevertheless, analyzing the dump file in device
is necessary because transferring the dumped memory file out of the
device can be disabled by the attacker if she has the physical control
of the device. The following work of iCORE will be attempting
to narrow the semantic gap itself to enforce the security since the
bridge between binaries and the kernel structures will help iCORE to
monitor the real critical information.

8 RELATED WORK
Hardware/Hypervisor-assisted Monitoring Methods. As we men-
tioned in Section 2, modern monitoring methods are classified into
hardware-assisted and hypervisor-assisted methods, the shortcom-
ings and advantages of both of which have also been discussed.
Other efforts have been made to expand the monitoring fields and to
mitigate the negative impact brought by these two categories.

Articles [19, 24, 40] proposed another method called tiny-hypervisor.
It is a thin software TCB (trusted computing base) that has a small
amount of code to reduce the attack interface to monitor and protect
the system, which performs well on monitoring virtual machines.
However, they still require virtualization support on the target system,
which is costly deployed on all mobile devices. Since most mobile
and IoT devices are deploying ARM TrustZone extension, iCORE

will have a better performance than the tiny-hypervisors do.
As for hardware-assisted methods that we mentioned in Sec-

tion 2, Vigilare [29] and Ki-Mon [20] provided additional external
equipment to protect the static and dynamic kernel objects from
being tamped, respectively. Davi et. al [10] designed a hardware-
based control flow integrity defense for embedded systems against
return-oriented programming (ROP) attacks. Based on this work,
HAFIX [9] is proposed as a defensive extension against ROP attacks
using backward edges. However, it is costly and inconvenient to
take another device dedicated to real-time protection and monitoring
purposes along with the mobile devices. To avoid using additional
equipment, TZ-RKP [6] and SPROBES [13] take advantage of ARM
TrustZone extension to trap the page table updates, switch to the
secure world through smc instruction, and verify the write signal
on the monitored memory area. MIPE [7] does the similar work to
protect the memory of the normal world. It checks in the secure
world if the previous status of a physical address that the normal
world maps when a page fault occurs has already been mapped to
a virtual address. These methods still require operations in the nor-
mal world to switch to the secure world, which slows the execution
down and can be disabled by the compromised normal world. iCORE

provides a possibility to the research on developing security tools

based on ARM TrustZone that the monitoring tool in the secure
world can struggle out of control of the normal world with self-
decision-making power so that the attackers in the normal world
cannot disable its functionalities.

Continuous Monitoring Mechanisms. Current continuous mon-
itoring mechanisms exploit trampolines, which are used to store ad-
dresses pointing to interrupt service routines, or hooks pre-installed
in the monitored system to change the control flow of the existing
execution path to the monitoring functionalities. This requires that
the hooks and trampolines should be properly protected from tam-
pered so that the monitoring mechanism can keep their integrity
and availability. Articles [33, 39] implement trampolines that are
guaranteed by a hypervisor level memory protection approach to
monitor the VM.

From another perspective, ARM TrustZone is also exploited to de-
ploy the continuous monitoring. Mechanisms such as TIMA (Trust-
Zone Integrity Measurement Architecture) [35, 45] implement the
monitoring code in TrustZone and implant the trampoline in the
secure world kernel to enhance the integrity of the static memory
block in the normal world. The purpose of iCORE is also to provide
a secure environment based on ARM TrustZone for normal world
OS. However, iCORE is more effective because it does not require
additional modifications on the normal world OS source code and
can get access to all the normal world memory with high visibility
due to its highest privilege state. Thus, iCORE is an improvement of
the traditional continuous monitoring mechanism.

9 CONCLUSION
In conclusion, we present iCORE, an innovative continuous and
proactive extrospection system with high visibility technique on IoT
devices deploying multi-core ARM platform in this paper. iCORE

exploits ARM TrustZone technology to dedicate one core in the
secure world forever, assuring the computing integrity of static kernel
memory region of the normal world. By breaking the original time-
sharing paradigm of such systems, iCORE enables continuous co-
processor-like monitoring with high visibility into the rich execution
environment on such mobile and IoT platforms based on the design
of ARM TrustZone architecture that the secure world can access all
the resources in the normal world. iCORE plays a role as master and
monitors the pre-selected memory area proactively so that the normal
world cannot detect or disable the functionalities of it because iCORE

gets out of control of the normal world since the system booting
procedure. And by ensuring that security tools execute on certain
physical CPU cores, the system’s attack surface is significantly
reduced. Also, with the increasing number of mobile CPU cores



SAC ’19, April 8–12, 2019, Limassol, Cyprus Penghui Zhang, Haehyun Cho, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn

and based on the results of the evaluation, iCORE only introduces a
negligible overhead.

ACKNOWLEDGEMENT
This material is based upon work supported in part by Samsung
Research, Samsung Electronics, the Center for Cybersecurity and
Digital Forensics at Arizona State University, the Global Research
Laboratory Program through the National Research Foundation of
Korea funded by the Ministry of Science, ICT under Grant NRF-
2014K1A1A2043029, and the National Science Foundation under
Grant No. 1642031.

REFERENCES
[1] AMD. 2005. Secure Virtual Machine Architecture Reference Manual. https://

www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf.
[2] ARM. 2009. ARM Security Technology Building a Secure System using

TrustZone Technology. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.prd29-genc-009492c/index.html.

[3] ARM. 2015. ARM Cortex-A Series Programmer’s Guide for ARMv8-A. http:
//infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html.

[4] ARM. 2016. SMC CALLING CONVENTION System Software on ARM
Platforms. http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/
ARMDEN0028BSMCCallingConvention.pdf.

[5] ARM. 2017. ARM Trusted Firmware. https://github.com/ARM-software/arm-
trusted-firmware.

[6] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World. In Proceedings of
the 21st ACM Conference on Computer and Communications Security (CCS).
Scottsdale, AZ, 90–102.

[7] Rui Chang, Liehui Jiang, Wenzhi Chen, Yang Xiang, Yuxia Cheng, and Abdul-
hameed Alelaiwi. 2017. MIPE: a practical memory integrity protection method in
a trusted execution environment. Cluster Computing 20, 2 (2017), 1075–1087.

[8] P Daniel, Cesati Marco, et al. 2007. Understanding the Linux kernel.
[9] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick

Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. 2015. HAFIX: Hardware-
assisted flow integrity extension. In Proceedings of the 52nd Annual Design
Automation Conference. San Francisco, CA.

[10] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. 2014. Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation. In Proceedings of the 51st Annual Design
Automation Conference. San Francisco, CA.

[11] World Economic Forum. 2018. The Global Risks Report 2018, 13th Edition.
http://www3.weforum.org/docs/WEFGRR18Report.pdf.

[12] VOLATILITY FOUNDATION. 2017. Volatility Framework - Volatile memory
extraction utility framework. https://github.com/volatilityfoundation/volatility.

[13] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. SPROBES: En-
forcing kernel code integrity on the trustzone architecture. In Proceedings of the
3rd IEEE Mobile Security Technologies Workshop (MoST). San Jose, CA.

[14] GlobalPlatform. 2016. GlobalPlatform made simple guide: Trusted Execution
Environment (TEE) Guide. http://www.globalplatform.org/mediaguidetee.asp.

[15] Intel. 2014. Intel Trusted Execution Technology (Intel TXT). https:
//www.intel.com/content/www/us/en/architecture-and-technology/trusted-
execution-technology/trusted-execution-technology-security-paper.html.

[16] Xuxian Jiang and Xinyuan Wang. 2007. Out-of-the-box Monitoring of VM-based
High-Interaction Honeypots. In Proceedings of the 10th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID). Queensland, Australia,
198–218.

[17] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. 2007. Stealthy malware detection
through vmm-based out-of-the-box semantic view reconstruction. In Proceedings
of the 14th ACM Conference on Computer and Communications Security (CCS).
128–138.

[18] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis. [n. d.].
kGuard: Lightweight Kernel Protection against Return-to-User Attacks.. In Pro-
ceedings of the 21st USENIX Security Symposium (Security).

[19] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and
Michael Peter. 2011. L4Android: a generic operating system framework for secure
smartphones. In Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices (SPSM). Chicago, IL, 39–50.

[20] Hojoon Lee, Hyungon Moon, Ingoo Heo, Daehee Jang, Jinsoo Jang, Kihwan
Kim, Yunheung Paek, and Brent Kang. 2017. KI-Mon ARM: A Hardware-
assisted Event-triggered Monitoring Platform for Mutable Kernel Object. IEEE
Transactions on Dependable and Secure Computing (2017).

[21] Anthony Lineberry. 2009. Malicious Code Injection via/dev/mem. Black Hat
Europe (2009), 11.

[22] Lionel Litty, H Andrés Lagar-Cavilla, and David Lie. 2008. Hypervisor Support
for Identifying Covertly Executing Binaries.. In Proceedings of the 17th USENIX
Security Symposium (Security). Boston, MA, 243–258.

[23] Teresa F Lunt and R Jagannathan. 1988. A prototype real-time intrusion-detection
expert system. In Proceedings of the 9th IEEE Symposium on Security and Privacy
(Oakland). Oakland, CA, 59–66.

[24] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi
Isozaki. 2008. Flicker: An execution infrastructure for TCB minimization. In
Proceedings of the 3rd European Conference on Computer Systems (EuroSys).
Glasgow, Scotland UK, 315–328.

[25] MITRE. 2017. CVE-2017-15589 Detail. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-15589.

[26] MITRE. 2017. CVE-2017-7228 Detail. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-7228.

[27] MITRE. 2018. CVE-2018-1068 Detail. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2018-1068.

[28] MITRE. 2018. CVE-2018-7542 Detail. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2018-7542.

[29] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and
Brent Byunghoon Kang. 2012. Vigilare: toward snoop-based kernel integrity
monitor. In Proceedings of the 19th ACM Conference on Computer and Communi-
cations Security (CCS). Raleigh, NC, 28–37.

[30] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah Martin.
2016. Trustzone explained: Architectural features and use cases. In Proceedings of
the IEEE 2nd International Conference on Collaboration and Internet Computing
(CIC). Pittsburgh, PA, 445–451.

[31] OP-TEE. 2018. OP-TEE Trusted OS Documentation. https://www.op-tee.org/.
[32] Reena Panda, Shuang Song, Joseph Dean, and Lizy K John. 2018. Wait of a

Decade: Did SPEC CPU 2017 Broaden the Performance Horizon?. In Proceedings
of the 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). Vienna, Austria, 271–282.

[33] Bryan D Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. 2008. Lares:
An architecture for secure active monitoring using virtualization. In Proceedings
of the 29th IEEE Symposium on Security and Privacy (Oakland). Oakland, CA,
233–247.

[34] Nick L Petroni Jr, Timothy Fraser, AAron Walters, and William A Arbaugh.
2006. An Architecture for Specification-Based Detection of Semantic Integrity
Violations in Kernel Dynamic Data.. In Proceedings of the 15th USENIX Security
Symposium (Security). Vancouver, Canada, 289–304.

[35] Daniel Plastina, Jonathan Cain, and Michael Novak. 2005. Methods, systems,
and computer-readable media for generating an ordered list of one or more media
items. US Patent App. 11/089,696.

[36] Mendel Rosenblum and Tal Garfinkel. 2005. Virtual machine monitors: Current
technology and future trends. Computer 38, 5 (2005), 39–47.

[37] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for commodity OSes.
In Proceedings of the 21st ACM Symposium on Operating Systems Principles
(SOSP). Stevenson, WA, 335–350.

[38] Pavitra Shankdhar. 2018. 22 Popular Computer Forensics Tools [Updated for
2018]. https://resources.infosecinstitute.com/computer-forensics-tools/#gref.

[39] Monirul I Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. 2009. Secure
in-vm monitoring using hardware virtualization. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS). Chicago, IL, 477–
487.

[40] Udo Steinberg and Bernhard Kauer. 2010. NOVA: a microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European Conference on
Computer Systems (EuroSys). ACM, 209–222.

[41] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. 2014. Trustdump:
Reliable memory acquisition on smartphones. In Proceedings of the 19th European
Symposium on Research in Computer Security (ESORICS). Wroclaw, Poland, 202–
218.

[42] Arijit Ukil, Jaydip Sen, and Sripad Koilakonda. 2011. Embedded security for
Internet of Things. In Proceedings of the 2nd National Conference on Emerging
Trends and Applications in Computer Science. Shillong, India.

[43] USMAN. 2013. Apple’s Secure Enclave for Touch ID And Its Importance Detailed.
(2013). http://www.iphoneincanada.ca/iphone-5s/apples-new-secure-enclave-
details/.

[44] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. 2009. Countering kernel
rootkits with lightweight hook protection. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security (CCS). Chicago, IL, 545–554.

[45] White Paper: An Overview of the Samsung Knox Platform. 2016. Samsung Knox.
https://kp-cdn.samsungknox.com/df4184593021d7b8fabfdfeff5c318ba.pdf.

https://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf
https://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
http://www3.weforum.org/docs/WEF_GRR18_Report.pdf
https://github.com/volatilityfoundation/volatility
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15589
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-15589
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1068
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1068
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7542
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-7542
https://www.op-tee.org/
https://resources.infosecinstitute.com/computer-forensics-tools/#gref
http://www.iphoneincanada.ca/iphone-5s/apples-new-secure-enclave-details/
http://www.iphoneincanada.ca/iphone-5s/apples-new-secure-enclave-details/
https://kp-cdn.samsungknox.com/df4184593021d7b8fabfdfeff5c318ba.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Monitoring Mechanisms
	2.2 ARM TrustZone Architecture

	3 Assumptions and Threat Model
	3.1 Assumptions
	3.2 Threat Model

	4 System Design
	4.1 Initialization of iCore
	4.2 Continuous and Proactive Extrospection

	5 Implementation
	5.1 Core Initialization
	5.2 Memory Acquisition
	5.3 Continuous and Proactive Extrospection

	6 Evaluation
	6.1 Effectiveness of iCore
	6.2 Performance with iCore

	7 Discussion and Future work
	7.1 Response After Detection
	7.2 Potential Threats Against iCore
	7.3 Extension of iCore

	8 Related Work
	9 Conclusion
	References

