
Intrusion Detection Force:
An Infrastructure for Internet-Scale Intrusion Detection

Lawrence Teo1,2 Yuliang Zheng1,2 Gail-Joon Ahn1

1 Laboratory of Information Integration,
Security and Privacy (LIISP)

University of North Carolina at Charlotte,
9201 University City Blvd,
Charlotte, NC 28223, USA.

2 Calyptix Security Corporation
P.O. Box 561508,

Charlotte, NC 28256, USA.
http://www.calyptix.com/

{lcteo,yzheng,gahn}@uncc.edu

Abstract

Intrusion Detection Systems (IDSs) are usually deployed
within the confines of an organization. There is usually no
exchange of information between an IDS in one organiza-
tion with those in other organizations. The effectiveness of
IDSs at detecting present-day sophisticated attacks would
increase significantly if there are inter-organizational com-
munication and sharing of information among IDSs. We en-
vision a global Internet-scale defense infrastructure, which
we call the Intrusion Detection Force (IDF), that would pro-
tect organizations and defend the Internet as a whole. This
paper provides a blueprint of the IDF, where we discuss
the requirements to deploy such an infrastructure, and de-
scribe its architecture and design in terms of its basic build-
ing blocks and major components. We also describe a few
applications of the IDF architecture, and provide a small
experimental prototype that we are currently extending as
part of our vision to implement the full IDF infrastructure.

Keywords: Intrusion Detection, Intrusion Detection Force,
Survivability, Internet Scale, Information Sharing, Infras-
tructure, Recovery, Fault Tolerance.

1. Introduction

Since its inception more than 20 years ago, the field of
intrusion detection has been growing rapidly. Early intru-
sion detection systems (IDSs) catered only for a single host
or at most, a small network. As networks expanded and
organizations grew, there was clearly a need for large-scale
distributed intrusion detection. This led to the emergence of
distributed IDSs such as NADIR [12], Distributed Intrusion
Detection System (DIDS) [20], GrIDS [7], and AAFID [4].

Commercial IDSs have also adopted the distributed data
collection and processing paradigm.

Although these IDSs handled distributed intrusion de-
tection, it can be observed that they concentrated mainly
on handling the task of intrusion detection only within the
one organization that they are deployed in. An IDS in Or-
ganization A does not communicate at all with the IDS in
Organization B. Without inter-organizational information
sharing, the potential of the IDSs and intelligence-gathering
ability of these organizations become severely limited. For
example, a setup such as this makes it difficult to detect dis-
tributed and stealthy attacks that span across the Internet,
such as distributed denial of service (DDoS) attacks.

The current infrastructure of the Internet is another factor
limiting the ability of organizations to conduct better attack
detection and prevention. Since the TCP/IP protocol suite
was not designed with security in mind [6], it is infeasible
to rely on it as a foundation for security.

To address these problems, it is evident that there needs
to be a form of information sharing among various security
technologies in different organizations. However, the scope
of information shared must not be limited to just a few or-
ganizations; for information sharing to be effective, it needs
to span across a very large scale, such as through the entire
Internet. The insecurity of TCP/IP calls for a logical, virtual
and secure layer on top of the current Internet infrastructure.

To enable this solution, we envision the creation of a
virtual infrastructure that would allow Internet-scale intru-
sion detection. We would like to introduce the term “Intru-
sion Detection Force”, or IDF, to describe this infrastruc-
ture. The IDF would be used by millions of hosts through-
out the Internet, spanning different organizations, countries,
and continents.

Why an “Intrusion Detection Force”? To explain the ra-
tionale and philosophy behind an intrusion detection force,

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

we wish to draw a parallel between the introduction of IDF
and the historical evolution of conventional military forces.
In the early history of humankind, there were small tribes
of similar people. To defend themselves, tribes typically
live in their own villages with boundaries to protect them-
selves against other tribes. As human relations improved,
various tribes began to live together and villages gradually
grew into towns. As larger numbers of people live together,
the defense force also increased in size and adopted a more
organized structure. Towns later emerged into cities, and
cities were later grouped into nations with their own large
defense forces. We can also see from history that nations
grouped together to become larger nations. Currently, it
can also be seen that nations with similar interests are form-
ing international coalitions with cooperating defense forces.
Another interesting observation is that the modern military
consists of many forces, such as the Army, Navy, and Air
Force, which perform different tasks in different areas, but
the overall goal is still to defend a nation.

Like the military forces, the IDF infrastructure we pro-
pose will also have entities and groups of entities which
span the Internet and work in different areas, but the overall
goal is to defend organizations and the Internet as a whole.
We are very much aware that the task of building such a
large infrastructure is enormous. There are numerous is-
sues to address and problems to solve, such as the design,
protocols, scalability, target systems, and malicious attacks
on the system itself. Due to the enormity of the task, it
would be near-impossible to produce actual results in the
short term. Therefore, the aim of this paper is not to present
full and final results, but to provide a high-level blueprint
and roadmap of the IDF for our long-term future work (hav-
ing said this, we will discuss some preliminary results from
our earlier work [23] in Section 5). We believe that this
blueprint is extremely important as it outlines the design
and architecture of a potential global Internet-scale defense
infrastructure. More specifically, we will present the con-
ceptual framework, architecture, design, and components
of the IDF. We will discuss the realistic requirements and
practical issues that need to be addressed in order to deploy
the Intrusion Detection Force on the Internet.

In summary, we propose an Internet-scale Intrusion De-
tection Force, which is a virtual infrastructure on top of the
current Internet that enables secure information sharing and
intelligent data analysis and response. The main objective
of the IDF is to defend organizations and protect the Internet
as a whole, in a way that is not possible before. Throughout
the paper, we will explain the IDF architecture and its appli-
cations. The concepts discussed in the paper were designed
and formulated through careful consideration of practical
and realistic deployment issues.

The rest of this paper is organized as follows: Section 2
presents the main requirements of the IDF infrastructure.

Section 3 presents the architecture and design, which aims
at fulfilling the requirements. It also describes the basic en-
tities of the architecture as well as a discussion of the hierar-
chical model used. Section 4 shows components built from
the entities discussed in Section 3 , along with a description
of their functions, how they relate to the IDF entities, and
their applications. Section 5 describes our current imple-
mentation with a description of our research prototype and
tests performed. Related work is presented in Section 6,
before the conclusion in Section 7.

2. Requirements

The four key requirements of the IDF are information
sharing, scalability, security, and scalability. This section
discusses these requirements in detail. Other requirements
are explained later in the section.

2.1. Information sharing

Information sharing is the “glue” and core strength of the
IDF. Information sharing is the active exchange of informa-
tion among the IDF community that will benefit each mem-
ber in the IDF. The information shared is analyzed and used
to protect and defend the organizations themselves. This
is different from the behavior of the current generation of
IDSs, which mainly confines all information inside the or-
ganization itself.

Our emphasis on inter-organizational information shar-
ing is reminiscent of the physical world. Following the ter-
rorist attacks in the United States on September 11, 2001,
the Bush administration proposed the Department of Home-
land Security, which acts as an information clearinghouse
for various law enforcement and intelligence agencies. This
allows information gathered from intelligence activities to
be analyzed and correlated in a way that could not have
been done should the agencies continue to confine infor-
mation within themselves (as was done in the past). In the
intrusion detection community, we can already see efforts
heading in this direction. For example, there is an IETF
Intrusion Detection Working Group (IDWG) [13] which is
developing the Intrusion Detection Message Exchange For-
mat (IDMEF) to provide a standardized message format for
exchanging messages between different IDSs (it should be
noted that the IDWG was already present prior to the events
of September 11).

In the context of the IDF, it should be noted that the
term “information” does not refer to proprietary informa-
tion of companies and organizations; rather, it refers to net-
work traffic data and generic data collected from hosts that
are used by the IDF for analysis. In reality, however, or-
ganizations will still be concerned about the exchange of

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

information, even if it is clearly shown that it is not pro-
prietary. This is understandable because it is only natural
for organizations to be concerned about the privacy of their
data. However, certain protocols may contain proprietary
information that is sent in the clear over the network. For
example, it cannot be avoided if an insecure telnet connec-
tion shows some amount of confidential information over
the network in the clear (of course, an organization that still
uses telnet in this age should seriously revamp and enforce
its security policy).

This problem can be addressed in two fronts using tech-
nology and policy. Firstly, the technology has to be sophis-
ticated enough to intelligently filter outgoing information
by blinding out private information while preserving other
information needed for analysis. The technology has to de-
cide which parts of the information need to be blinded, and
which do not.

The second approach is to allow organizations to de-
fine and customize the information sharing policy. This al-
lows organizations to determine the level and the amount
of information to be shared with other organizations. It is
also important to provide users with pre-defined policies for
them to choose. We should not assume that all users are ad-
vanced users who fully understand security and the conse-
quences of information sharing. However, this is a human
interface issue which we will not discuss in detail in this
paper.

2.2. Scalability

The Internet consists of millions of inter-connected
hosts. In order for the IDF to scale to the size of the Internet,
it has to cater to the needs of millions of hosts. Having said
this, it is not realistic to assume an overnight deployment of
the IDF throughout the entire Internet. Since deployment
will definitely be conducted in phases over a significant pe-
riod of time, the IDF architecture has to be designed to scale
and grow from small networks to large networks. The types
of entities in the IDF architecture and the decisions on how
they can communicate with each other have to be carefully
evaluated.

We can learn a few strategies for achieving scalabil-
ity from other tried-and-true technologies which have been
proven to scale in this manner. Consider the Internet Pro-
tocol (IP), which is known to be highly scalable and has
the ability to run over almost anything. Some of the strate-
gies we can learn from IP are to make minimal assumptions
about the underlying network, and to use global, unique ad-
dressing methods (a notion which is also used in Internet-
scale research operating systems, such as Chord [22]). We
can also learn from the problems of IP, such as IPv4’s inabil-
ity to scale past 4 million nodes, and the solutions proposed
in IPv6.

2.3. Security

The IDF’s role in exchanging information between dif-
ferent organizations brings with it the responsibility of se-
curing these information exchanges. Since the IDF will
be deployed on systems and networks which are untrusted
and which may have questionable reliability, we will make
two conservative assumptions that will affect the security
requirements of the IDF:

• Assumption 1: The IDF is operating in a hostile and
non-trusting environment.

• Assumption 2: The IDF is operating on an unreliable
underlying network.

We will now discuss IDF security requirements in terms
of the three traditional aims of security: Confidentiality, in-
tegrity, availability.

The nature of the information exchanged by the IDF be-
tween organizations can be used to gather intelligence about
the organizations for malicious purposes. Therefore, it is
clearly evident that we have to keep IDF information ex-
changes totally confidential. This defends against attacks
such as eavesdropping and other malicious information-
gathering attacks. Securing these information exchanges
can be done using encryption, and one strategy to allow en-
crypted information exchanges for different organizations is
to use a form of public key infrastructure (PKI).

The IDF would undoubtedly be a potential target for at-
tackers, given the value of the assets it is designed to pro-
tect. Attackers would definitely be interested in modifying
or spoofing the messages exchanged to confuse the system
for illegal purposes. It is important that the integrity of mes-
sages exchanged be protected against unauthorized modifi-
cation.

The IDF also has to ensure the availability of its services
to organizations. However, due to the hostile environment
of its deployment, this is not always possible. There are
two types of incidents that can make systems unavailable:
the first is the typical distributed denial-of-service attack.
Although the IDF is designed to address such attacks, it
may not always be possible to totally prevent them. The
other category of incident that can render systems unavail-
able are accidents. Nodes may suddenly get disconnected
due to physical problems or natural disasters. The other key
requirement of survivability addresses these issues.

In order to provide maximum security of the IDF itself,
it is important that the IDF architecture is hardened. Use
of cryptography, authentication, and authorization schemes
for the IDF to achieve this requirement must be carefully
studied and tested. Implementation of the IDF architecture
should be done using well-developed processes and secure
programming practices.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

2.4. Survivability

The fourth key requirement, survivability, is related to
security, but it is distinct and important enough to warrant a
separate section for its discussion. Survivability is defined
[9] as “the capability of a system to fulfill its mission, in a
timely manner, in the presence of attacks, failures, or acci-
dents.” Survivability is vital because no system, no matter
how well designed and implemented, is totally immune to
failures. Survivability is even more important in the IDF
because the IDF will be deployed in a highly distributed
manner in potentially hostile environments throughout the
Internet. The aim of survivability is not to prevent failures,
but to ensure that even if the system fails, it will do so in a
fail-safe manner.

One approach to achieve survivability in the IDF is
to use mechanisms like application-level fault tolerance
[5, 10, 11]. This is particularly apt to be used because we
are not making the assumption that the underlying network
on which the IDF runs is sufficiently fault tolerant. Thus,
application-level fault tolerance can be used to complement
existing system-level fault tolerance mechanisms.

2.5. Other requirements

Apart from the key requirements, there are other smaller
requirements that the IDF has to fulfill. These requirements
are interoperability, extensibility, and the need to achieve a
balance between usability and security. These requirements
are explained as follows.

2.5.1. Interoperability. A typical network environment of
today consists of heterogeneous systems. The types of net-
work, operating systems, hardware platforms, security so-
lutions, and so on are very likely to be different. Legacy
systems further complicate the situation. There are a few
ways to deploy the IDF in such an environment. The first
option is to enforce standardization of technologies on the
user. By this, we mean that we will force the user to use
only one type or a selected set of allowable technologies.
In practice, this is highly undesirable, since users are more
likely to stay with technologies that have previously worked
for them. Furthermore, there may be cost and resource con-
straints that may prevent them from adopting new standards.
In other words, it is unlikely that organizations would re-
place their current firewalls and intrusion detection systems
unless the replacement technologies provide significantly
more value than the current ones.

One strategy to address this is to integrate the IDF with
whatever technologies that are currently in use in the or-
ganization. It is important that the integration solution be
platform- and network-independent. This is necessary to

allow deployment of the IDF into any potential heteroge-
neous environment in a typical organization.

2.5.2. Extensibility. With the IDF infrastructure in place, it
is likely that there will be new potential applications that can
take advantage of the infrastructure. To allow the develop-
ment of future applications of the architecture, the IDF must
be designed to be extensible and provide a secure platform
for developers to design and implement new applications.

2.5.3. Balance between usability and security. Lastly,
there needs to be a balance between usability and security.
While the IDF can be designed to be secure and hardened, it
is of limited use if it does not complement an organization’s
existing policies and practices. It also needs to be usable by
both novice and advanced users. This last requirement can
be addressed by designing an effective user interface and
providing adequate training for users.

3. Architecture and design

We have presented the requirements of the IDF, and we
will now describe its architecture and design. First, we
present the key design decisions made to fulfill the require-
ments discussed in the previous section. Then, we explain
the hierarchical model of the IDF architecture. This is fol-
lowed by a discussion of the entities in the IDF architecture.

3.1. Design decisions

In order to accomodate the requirements stated in the
previous section, we have carefully made a set of design
decisions which we believe would best fit the IDF. It should
be noted that these design decisions refer not so much to a
specific intrusion detection engine itself, but rather the high-
level IDF infrastructure which allows various intrusion de-
tection engines to communicate. Another way to phrase it
is that the IDF has entities which can wrap around other
already-available intrusion detection engines. The follow-
ing list describes our design decisions and justification on
the aspects of detection, response, audit sources, interoper-
ability, data collection, data processing, and systems secu-
rity in the IDF:

1. Detection must be done in real time. In order to
achieve high-speed response and proactively react to
intrusions, it is evident that detection must be done in
real time and not in batch mode.

2. Response can be either passive or active. The type
of response can either be passive or active, depend-
ing on the security policy defined by the administrator.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Passive here means that the events will be stored in
a log, while active means that the events will trigger
some actions (such as attack countermeasures) which
will respond accordingly to the event. Both modes are
supported because it would not be practical to force
the user into just one mode; one of the requirements of
the IDF is to be highly interoperable, which also im-
plies flexibility to adjust to various security policies.
Response must also be high-speed and timely to react
to events, regardless of whether the active or passive
mode is chosen.

3. The audit sources must be taken from both the host
and network. The IDF spans the entire Internet and
runs on a variety of hosts and networks. Since attacks
can be launched from and against both hosts and net-
works, the IDF’s capabilities would be limited if the
audit sources are confined to either host or network
only. Unlike a regular intrusion detection engine, the
IDF has to work with a very large scale and gather as
much data as possible for analysis.

4. The IDF needs to have a high degree of interoper-
ability. The IDF will be used in a heterogeneous en-
vironment. It needs to be highly interoperable with
various operating systems, networks, machine archi-
tectures, and other security solutions.

5. Data collection must be done in a distributed man-
ner. Since the IDF’s target environment is extremely
large and may consist of various heterogeneous sys-
tems, data collection must be performed in a dis-
tributed manner.

6. Data processing must be done in a distributed man-
ner. Two of the requirements stated in the previous
section are security and survivability. In order for the
IDF to protect the organizations, the data collected
from them must be available for analysis. Even if the
systems that host them do fail, they must do so in a
fail-safe manner. To accomplish this, data has to be
replicated so that they can be retrieved from elsewhere
even if the systems that host them are no longer avail-
able.

7. The security of the IDF itself must be high. This
statement means that the IDF itself must be able to
withstand hostile attack against its architecture. It must
be resistant to tampering, even from the hosts it is run-
ning on. The security of an IDS itself is one area that
has not been addressed by many other IDSs [3].

3.2. Hierarchical model

Before we commence a discussion of the entities in the
IDF, it is important to discuss how the entities should be

arranged in the architecture. Since the IDF is meant to be
deployed on a very large scale, the entities must be arranged
according to some form of hierarchy to ensure scalability.

The decision on the number of hierarchical levels in the
IDF architecture is critical. This number will affect the fea-
sibility of the IDF to be practically deployed, and therefore
must be carefully considered. There are a few approaches
we can take to determine the number of levels required to
fulfill our main requirements of information sharing, scala-
bility, security, and survivability.

The first approach we can use is to have a multi-level
hierarchy, such as a hierarchy of four or five levels, or up
to a certain large number of levels. This is somewhat like
the Internet’s Domain Name System (DNS) model [16]. An
architecture with a hierarchy such as this would be able to
compartmentalize the shared information to various defined
areas. While this is a good property of this model, there are
problems with it as well. As the network grows, the num-
ber of levels become complicated and rigid. There is also
the problem of deciding what to do with the information
stored at each level; in other words, this model becomes in-
creasingly difficult to implement as the network grows. It
becomes hard to predict problems that may occur if there is
a large hierarchy of entities to consider. Also, an attack on
a high-level entity may affect the entities below it.

At the other end of the spectrum, we can employ a totally
distributed architecture with no hierarchy. This means that
each entity in the system is an actual peer to another entity,
where they share equal capabilities and rights. This model
enables all entities to be implemented in a uniform manner,
thus achieving simplicity in implementation. Furthermore,
this model facilitates easy information sharing. Since all
entities have equal rights, they can easily duplicate infor-
mation for redundancy purposes and reduce the impact of
an attack that shuts down a few entities. This model can
be compared to the peer-to-peer filesharing systems of to-
day. Interestingly, this model has some of the same disad-
vantages that we discussed with the multi-level hierarchical
model. Again, as the network grows, potential problems
become difficult to predict due to the anarchic nature of the
network. The network becomes difficult to manage, and
there is a danger of losing control.

For the purposes of the IDF, we propose the use of a hy-
brid model that combines the advantages of both the multi-
level hierarchical model and the totally distributed model.
We believe that a two-level hierarchy provides the optimal
combination of both models. This model achieves simplic-
ity since there are only two types of entities to implement.
To achieve scalability and security, the entities will be al-
lowed to link themselves to one another, somewhat like the
distributed model discussed earlier. We will now present
the entities involved in the IDF and how they relate to this
hierarchical model.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Table 1. IDF entities: Names, definitions, and functions
Name Definition and Function
Node A node is a host which is running an IDF software agent.

A node shares information with other nodes.
Collective A collection of nodes. Nodes in a collective forward

information to each other in order to achieve
resiliency and support availability (security)
and survivability.

Supernode A supernode is a special node that provides higher-level
services to collectives. These services usually involve
those not available at the node level, such as
CPU-intensive operations.

Super- A collection of supernodes, acting in the same way as
collective the collective to achieve resiliency among supernodes.
Zone An area of the network or Internet under the authority

of a super-collective. Facilitates management and
administration, and achieves scalability.

3.3. Entities

We have designed a number of entities for the IDF, which
are summarized in Table 1. These entities can be thought of
as the basic building blocks of the IDF with simple func-
tions. They will be used as the foundation for larger com-
ponents with more advanced functions, which will be de-
scribed later in the paper. An outline of these entities is
shown in Fig. 1.

3.3.1. Nodes and supernodes. We would first like to intro-
duce the concept of a node in the context of the IDF. The
node is the most primitive entity in the IDF architecture. Its
main function is to exchange messages securely with other
nodes, as part of the solution to the information sharing re-
quirement. Apart from the main function, the node also per-
forms other tasks which work on the shared information.
These other tasks will be discussed in detail in Section 4.

A node consists of two parts: a host and a software agent.
A host is a computing device, whether it is a workstation,
mobile device, laptop computer, and so on. A software
agent is a continually running program on the host that per-
forms the tasks required for the IDF.

There are two types of nodes: a normal node (as de-
scribed in the previous paragraph) and a supernode. A su-
pernode is a special node that performs higher-level func-
tions compared to a normal node. The main purpose of a
supernode is to provide a location for data analysis.

In terms of the two-level hierarchical model proposed in
Section 3.2, nodes reside at the lower level while supern-
odes reside at the higher level in the hierarchy. In Fig. 1,
the nodes are represented by the white boxes while the su-
pernodes are represented by black boxes. Without going

into the details, the basic idea is that the node will register
itself with the supernode to obtain services. For example, a
node may collect data on its host and forward the data to the
supernode for analysis.

3.3.2. Collectives and super-collectives. In order for the
IDF to be survivable, nodes and supernodes by themselves
are not enough. If a node or a supernode fails, the data
and analysis results on it may be lost forever. To circum-
vent this, we introduce two new entities: the collective and
super-collective. A collective is a collection of nodes us-
ing the topology of a ring (see Fig. 1). Likewise, a super-
collective is a collection of supernodes (a super-collective
is also known as a supernode collective).

The reason it is in the form of a ring is to achieve data
availability and survivability through data replication. Sim-
ilar to the way peer-to-peer file sharing systems work, the
nodes in a collective can exchange data to introduce redun-
dancy. This minimizes the loss of data in the event of a
crash or denial-of-service attack.

3.3.3. Zones. A zone is a logical area of the IDF that is
placed under the authority of a super-collective. Zones
simplify administration and management of the super-
collective and their associated collectives. The concept of
a zone is similar to that of a subnet in a LAN; just like how
a LAN can be segmented into smaller subnets for easier ad-
ministration, a zone can be used to divide a large organiza-
tion down into smaller more-manageable areas. Having the
concept of zones also allow scalability and compartmental-
ization of information.

The use of a zone can be explained better if an example
is used. Suppose the IDF is used at a university. If it is a

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Supernode
Collective

A

Collective
A1

Node

Node

Node

Node

Collective
A2

Node

Node

Node

Node

Super
Node

Super
Node

Super
Node

Super
Node

Supernode
Collective

B

Collective
B2

Node

Node

Node

Node

Super
Node

Super
Node

Super
Node

Super
Node

Collective
B1

Node

Node

Node

Node

ZONE A

ZONE B

Figure 1. The entities in the IDF architecture

large university, a zone can be set up for each department.
If needed, a large department can be segmented into even
smaller zones, say, by research units. Using zones, the ad-
ministrator can scale the IDF according to the size of the
organization. Likewise, a company can have separate zones
for its branches and departments.

3.3.4. Summary of entities. Since it is very important to
understand the concept of the IDF entities before continuing
with the rest of the paper, we provide a summary here. The
basic entity of the IDF is a node. Nodes form collectives. A
special node called the supernode forms super-collectives.
Collectives register themselves with super-collectives. The
area under the authority of a super-collective is called a
zone. Nodes enable information sharing. Supernodes pro-
vide a location for analysis. Collectives allow redundancy
to support security and survivability. Zones facilitate man-
agement and administration, as well as scalability.

4. Major components

In order for the entities (nodes, supernodes, etc.) de-
scribed in the previous section to fully support the require-
ments outlined in Section 2, the entities have to be used to
carry out more functions. For example, the nodes and su-
pernodes have to collect data, perform analysis, respond to
events, among other functions. To implement these higher-
level functions, more specific IDF components that carry
them out have to be built. We can think of the nodes and
supernodes as basic building blocks, and the components
described in this section are built on top of them.

If we compare this to the Internet, nodes and collectives
would be similar to hosts and networks. The components
here would be similar to the applications of the Internet
when the hosts and networks are chained together. For ex-
ample, applications like the World Wide Web and email ser-
vices require the hosts and networks to be in place for them
to work.

We propose eight such components to perform various
high-level IDF functions. The first two components are re-
quired for all other components to work. They are the IDF
Adaptation Layer and the communication and recovery sub-
system. The next three components (data collection sen-
sor, analysis engine, and response engine) provide the core
functions of the IDF for intrusion detection. The last three
components provide other services for the IDF.

This section describes each component of the IDF. For
each component, we explain its purpose, why it is needed,
and how it fulfills the requirements presented earlier in the
paper. We also explain the roles of both the node and
supernode in carrying out the function of the component.
Fig. 2 is a diagram showing how the components and nodes
are related.

As a side note, it should be mentioned that not all compo-
nents are automated. Some functions require some human
intervention for them to work. It should also be noted that
these components are very large and they carry out many
functions. It is not possible to explain all the concepts and
functions of each component in this paper alone. Therefore,
we will just discuss the basic high-level concepts of each
component, and how they interact with the nodes and su-
pernodes. The specific functions of the components them-
selves will be the subject of future papers.

4.1. IDF Adaptation Layer (IDFAL)

One of the most important components of the IDF is
the Intrusion Detection Force Adaptation Layer (IDFAL)
(Fig. 3). The IDFAL is an integration component that inter-
faces with the host’s existing security software (other IDSs,
firewalls, anti-virus software), applications, and the oper-
ating system. It provides a layer of abstraction between

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Node

NodeNode

Vulnerability Database
Interface

Analysis Engine Data Collection Sensor

Response Engine

Software Updates
Distribution

Plugin Extension
Engine

Agent(remote)

IDS, Firewall , Apps , etc.

IDF Adaptation Layer

Operating System

Network

Vulnerability
database

Anomaly profile
database

Attacker profile
database

(remote)

Software update
repository

Host log
files

Node

Collective

Figure 2. How the components relate to the
nodes. Each node performs a function of
every component. The actual function per-
formed is different depending on whether the
node is a regular node or supernode.

User Interface

Sensor Analysis Response Updates Plugins

IDF Adaptation Layer

IDS, Firewall , Anti-virus, apps , etc

Operating System

Host

Agent

Network

Figure 3. The IDF Adaptation Layer

platform-specific parts and the IDF components.
While the IDFAL has a few similarities with virtual ma-

chines, such as Java’s, the main difference is that the ID-
FAL is not a separate entity that interprets and executes code
given to it. We would liken it more to the system call API
of an operating system that provides platform-specific low-
level functions. This means that the IDFAL is precompiled
into the node itself (or more specifically, into the IDF soft-
ware agent running on the host). An advantage of this ap-
proach is that it achieves higher speed and better efficiency
compared to the separately-compiled virtual machine-style
approach.

The IDFAL provides a generic platform- and network-
independent interface to the higher-level IDF components.
Note that while we mention network independence, we be-
lieve it would be more efficient to engineer the IDFAL to be

partially specific to TCP/IP, since it is the predominant pro-
tocol suite being used on the Internet today and in the fore-
seeable future. Welz and Hutchison [26] have done some
work on interfacing trusted applications with IDSs, but their
work focuses on tight coupling of IDSs. The IDFAL is de-
signed to be modular and aims to provide a more loosely-
coupled separate layer of interaction in order to achieve
platform independence as well as support tasks not related
to intrusion detection, such as updates and plugins.

To gain a better idea of how the IDFAL works, consider
the case when an IDF node is deployed into a heterogeneous
environment with different IDSs. The task of collecting data
from the IDSs individually in such an environment would be
difficult. With the IDFAL in place, the specific IDSs can be
queried in a uniform manner by the higher-level IDF com-
ponents. It is clear that the task of developing the IDFAL is
not trivial. In order for the IDFAL to access operating sys-
tem services, networks, and security products in an indepen-
dent manner, and yet still take advantage of their different
features, the IDFAL API has to be designed very well.

4.2. Communication and Recovery Subsystem

The Communication and Recovery Subsystem is used to
handle communication and recovery operations. The rea-
son that the functions of communications and recovery are
combined together into one subsystem is because the two
operations have to be tightly coupled for the purposes of the
IDF. Communications should be handled concurrently with
recovery to achieve the requirements of security and surviv-
ability. Likewise, recovery operations are highly dependent
on the communication protocols.

The communications part of this subsystem has a few
responsibilities at the node level. Firstly, it facilitates
the exchange of messages between nodes. This includes
node-to-node, node-to-supernode, supernode-to-node, and
supernode-to-supernode communications. For collective-
to-collective communication, the communication subsys-
tem automatically elects a node to be in forwarding mode to
represent the collective. If the node fails, a new forwarding
node is automatically re-elected (this is actually part of the
recovery process). Secondly, it is responsible for all aspects
of node addressing and routing. Node addresses are as-
signed and identified using this subsystem. If a node wishes
to communicate with another node, the subsystem on the
source node queries neighboring nodes to work out the best
route to the destination node. This can be complicated, as
the task of developing an efficient routing protocol on a new
type of network is not trivial. Thirdly, the communication
subsystem addresses congestion issues. This responsibility
is especially important when the underlying physical net-
work is unreliable, such as in wireless networks. Lastly, it
handles registration of nodes with supernodes.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Figure 4. Formation of a collective

At the collective level, the communication part of the
subsystem initiates the formation of a new collective and
keeps track of changes in the collective. For example, it is
responsible for node additions and removals. It also needs
to maintain the state of nodes in the collective (whether they
are active, idle, unreachable, etc.), so that the nodes can
carry out their message exchanges and make routing deci-
sions accurately. While this is the desire of the design, this
is not an easy problem to solve. In order for every node
to know the states of other nodes, the communication sub-
system has to either broadcast messages out to every node
in the collective, or specify a policy that a node will only
know the states of its neighboring nodes. Both approaches
have their advantage and disadvantages. The first approach
ensures that each node has an accurate picture of the states
of the nodes, but it has the danger of flooding the network.
The second approach imposes less burden on the network,
but may not give timely accurate state information, thus af-
fecting routing decisions. Finding the right balance between
the two approaches will definitely be a challenge.

As an example of how the communication subsystem
works, Fig. 4 shows a step-by-step process of a formation
of a collective. The figure shows one node initiating a col-
lective, and three subsequent nodes joining the collective
one at a time. Communication messages will have to be ex-
changed among the nodes in order to form this four-node
collective.

The recovery part of the subsystem handles operations
such as data replication and assisting a collective to recover
from node failures. Data replication is used to introduce re-
dundancy to minimize the impact of data loss in the event of
a node failure or denial of service attack. If a node does fail
(whether due to an attack or hardware failure), the commu-
nication and recovery subsystem initiates reconstruction of
a collective. One possible approach for this recovery oper-
ation can be seen in Fig. 5. In the diagram, a four-node col-
lective (Fig. 5a) has a member that suddenly fails (Fig. 5b).
The neighboring nodes of the failed node detect this fail-
ure and change their states, thereby forming the temporary
collective in Fig. 5c. Suppose now that the failed node re-
covers. It will then communicate with its former neighbors
and reinstate itself (Fig. 5d), which results in the recon-

structed collective in Fig. 5e. This is just one approach that
may be used; more sophisticated recovery schemes would
be needed for more complex recovery scenarios.

4.3. Data Collection Sensor

The data collection sensor performs the task of gathering
events from the host and network. Collected data are logged
on the host’s log files. These data are then sent to the anal-
ysis engine so that they can be used to identify intrusions as
well as provide intelligence for future investigations on sus-
picious behavior. The ability of this component is specific
to the IDS that we are wrapping around. Again, the reason
why it wraps around other IDSs is because it is unlikely that
users will replace their IDS systems that they have already
deployed.

The functions provided at the node level are to log host-
specific events and to forward collected data to supernodes
at periodic intervals (so as to not overwhelm the supern-
odes). At the supernode level, the component collects data
from nodes. This data are then analyzed at the supernode.

4.4. Analysis Engine

Implementing data analysis on the IDF produces a sig-
nificant challenge, since there may be many hurdles to over-
come when dealing with data processing over such a large
scale. We believe that if the IDF were to achieve its full
potential, it has to perform three types of tasks: signature-
based intrusion detection, anomaly detection, and attacker
profiling. The large scale of an IDF deployment would re-
sult in the generation of a large amount of data. As such,
processing this data with both signature-based pattern anal-
ysis and anomaly detection techniques should yield interest-
ing results. We also believe attacker profiling is important.
Attacker profiling refers to the method of gathering unique
behavioral signatures of an attacker, which will be useful
for law enforcement at a later stage. Examples of a “unique
behavioral signature” include the type of words an attacker
uses to deface a website, and the set of frequent typos made
by the attacker at the UNIX shell.

The analysis engine is deployed on two levels: at the
node level, as well as at the supernode level. The node-level
analysis is similar to what a normal IDS would do. The
node-level analysis engine would perform audit reduction
and lightweight analysis. It then forwards relevant anal-
ysis results to the supernode-level analysis engine. The
supernode-level analysis engine performs higher-level pro-
cessing which includes identifying trends and suspicious
behavior found in the zone or other zones. It also performs
audit reduction and shares its analysis results with neigh-
boring super-collectives.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Figure 5. Reconstruction and recovery in a collective

Another difficult challenge that will be encountered
when implementing the Analysis Engine is the need to syn-
chronize the analysis results. How do we ensure that data
and results in all nodes are always consistent? This diffi-
culty warrants deeper investigation needed to develop a so-
lution. Another problem, which is also related to the data
collection sensor, is the issue of storage space. Being large
scale and distributed, the IDF nodes will definitely produce
a large amount of data to be processed. There will be issues
in finding storage space for the data to be stored. One ap-
proach to address this would be to set up a quota for audit
results. Since this may lead to lost results when the quota is
filled, the results should be sent to another node with higher
storage quota for safekeeping and redundancy purposes.

4.5. Response Engine

If intrusions are found, the IDF uses the Response En-
gine to send the results to the systems administrator. It pro-
vides a generic interface to the actual response mechanism,
which may be to a log file, a window alert, pager, email,
short message service (SMS), and so on. As described ear-
lier, the response engine can work in both active and passive
mode depending on the policy. The response engine gets its
data from nodes and supernodes in various zones.

The response engine may also take proactive attack
countermeasures to prevent further damage to the host, such
as requesting new software updates for the host’s platform
to prevent future attacks using the same vulnerability. An-
other preventative measure is to dynamically change fire-
wall rules on the host to ensure that future attacks of the
same nature do not happen. Like the other components, the
issues involved to enable these functions in the response en-
gine are complex. The IDF has to allow these types of re-
sponses but at the same time adhere to the security policy.

4.6. Vulnerability Database Interface

The Vulnerability Database Interface (VDI) provides an
interface to the IDF’s own Vulnerability Database as well as
publicly-known vulnerability databases. Examples of pub-

lic vulnerability databases include the SecurityFocus vul-
nerability database [19] and CVE [24] (while defined as a
“dictionary” instead of a database, the IDF should still be
able to use CVE for this purpose). The idea of having the
VDI is to provide up-to-date vulnerability information to
the other components such as the analysis engine and soft-
ware updates distribution engine. In the case of the CVE,
it should be noted that since the CVE is primarily meant to
be used by humans, there may be issues in automating this
with the VDI.

4.7. Software Updates Distribution Engine

The Software Updates Distribution Engine is designed
to enable the ability to preemptively react to an attack be-
fore it happens. The software updates distribution engine is
responsible for propagating software updates to IDF nodes
in a fast and timely manner. This engine also makes sure
that the software updates are delivered in a secure manner.
Software updates are stored and mirrored in many reposito-
ries to ensure that they are always available even when one
repository fails.

For the software updates distribution engine to work, the
node will first register software applications and operating
systems and versions with its supernode. The supernode
then pushes newly released and audited software updates to
the registered nodes.

Software updates also have to be authenticated before
they can be applied to the hosts. We have successfully pro-
totyped the software updates distribution engine with favor-
able results [23].

4.8. Plugin Extension Engine

The Plugin Extension Engine is designed to fulfill our
requirement of extensibility. The Plugin Extension Engine
allows third-party developers to develop plugins for the IDF
agent. This allows the IDF agent to perform tasks that it was
not originally designed for, thereby supporting our design
goal of extensibility. We believe that the scale of the IDF
and its distributed architecture has the potential to allow in-
novative applications to be built on top of it. However, this

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

ability may also be abused by malicious attackers who may
develop malicious plugins for the IDF. As such, third-party
IDF plugins may need to be authenticated and certified be-
fore they can be used.

4.9. Applications of the IDF components

When these IDF components work together, they can be
used in many applications that help to enhance the security
of the IDF community and the Internet. The following is a
short list of such applications that can be achieved:

1. Internet-scale intrusion detection. The components
can be used to achieve large-scale distributed intrusion
detection throughout the Internet. Through distributed
data collection via the sensors and data processing us-
ing the analysis engine in different zones, we can use
the IDF to detect highly distributed and stealthy at-
tacks.

2. Proactive intrusion prevention. Through proactive
response and countermeasures based on attack infor-
mation gathered from other zones and frequent soft-
ware updates, the IDF can preemptively set up de-
fenses to prevent intrusions and attacks before they oc-
cur.

3. Policy enforcement. The IDF can be set up to dis-
tribute nodes into different zones in a typical organi-
zation. This makes it convenient for enforcing policy.
For example, when a new policy is introduced, an ad-
ministrator can automatically ensure the policy is en-
forced on all the nodes in the zone. This is especially
useful if every system in the organization is an IDF
node. This capability also has the potential of reduc-
ing the workload and burden on the administrator.

4. Trust management. There has to be a form of
trust management among the nodes, since inter-
organizational information sharing is used in the IDF.
IDF nodes also have the potential to enable trust man-
agement on their host systems too.

5. Incident handling. Incident handling is made more
efficient through tools in the Analysis Engine like at-
tacker profiling. This also assists law enforcement and
computer forensic teams.

Apart from the short list of applications mentioned here,
more interesting uses of the IDF will be realized as we ex-
amine and revise the IDF architecture in detail. Other future
applications and uses that have not been presently realized
can be introduced at a later stage through the Plugin Exten-
sion Engine.

5. Current implementation

Due to the size of the proposed IDF infrastructure, it is
not possible to develop a full-scale implementation in the
short term. Therefore, we have built a small research pro-
totype of the architecture at present. Our initial goal was to
use the prototype to test the feasibility of the IDF architec-
ture in terms of the following test requirements:

1. Interoperability. How well does the prototype work
with different platforms and architectures?

2. Basic node-supernode communication. How feasi-
ble is the node-supernode model? Is it sufficient for
the actual IDF at a later stage?

3. Response time. How well does the model perform?

In order to gauge the effectiveness of the architecture us-
ing this prototype, we made the decision to build the pro-
totype as a small-scale implementation of one of the major
IDF components. The specific IDF component to use was
another decision to consider. The component chosen must
be quick and easy to prototype within the constraints of our
time and resources. It must have simple but well-defined
roles for the nodes and supernodes. It must also allow us
to test platform independence issues as part of the interop-
erability test requirement. Lastly, it must also allow us to
evaluate performance via the response time requirement.

After careful consideration, we selected the Software
Updates Distribution Engine as the component for proto-
typing. The updates engine is small enough to prototype,
and is not so complex that it will be a hurdle for us to pro-
duce short-term results. It is easy to define roles for the
supernodes and nodes – the nodes will register themselves
with the supernodes, and when software updates are avail-
able, the supernodes will deliver them to the nodes. We can
measure the delivery time and software update application
time to evaluate performance. As a bonus, it also lets us
test interoperability issues since it is easy to prototype and
therefore developing it in a platform-independent manner is
not difficult. In contrast, compare this to the tasks required
if we decided to implement the data collection sensor in-
stead. For our tests to be worthwhile, we would also have to
implement the analysis engine and response engine, result-
ing in a significant increase in complexity.

The software updates distribution engine prototype was
developed using ANSI C++ (for portability and speed) on
the Linux and OpenBSD platforms. It was tested on a small
Ethernet network with five hosts as shown in Fig. 6. Two
Linux distributions and OpenBSD were used at the nodes
to fulfill the interoperability requirement (Table 2). Yet an-
other Linux distribution was used at the supernode. XML
was used to represent the hosts’ system configurations, and

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

Host C
Node

Linux 2.4.17/ x86
(Red Hat 7.2)

Host A
Supernode / CA
Linux 2.4.17/ x86
(Slackware 8.0)

Host E
Repository

Solaris 8.0/ SPARC

Host B
Node

OpenBSD 3.0/ x86

router

Host D
Node

Linux 2.4.16/ x86
(Debian 3.0)

router

Figure 6. The test network used to test our
first experimental prototype

Table 2. Hosts in the test network
Host Role OS Architecture
A Supernode/CA Linux 2.4.17 x86

Slackware 8.0
B Node OpenBSD 3.0 x86

(Webserver)
C Node Linux 2.4.17 x86

(Desktop) Red Hat 7.2
D Node Linux 2.4.16 x86

(Laptop) Debian 3.0
E Repository Solaris 8.0 SPARC

SSL was used for authentication and confidentiality of com-
munication among the nodes.

Host A was set up to simulate a supernode collective and
also to double as a Certificate Authority (CA) for signing
and issuing certificates for SSL. Host E was set up as a
software updates repository, which was configured as a web
server to deliver updates using the HTTP protocol. Hosts
B, C, and D acted as the nodes and were issued signed
certificates by the CA as part of the initial preparation.

The prototype was tested using three UNIX programs –
sudo (for OpenBSD), pine (for Red Hat), and wu-ftpd (for
Debian). The supernode (Host A) was configured with a
database that maps the software update for the UNIX pro-
gram with its associated operating system. For example,
Red Hat Linux was mapped to pine. This means that the
pine version on the Red Hat machine is vulnerable, and
should be replaced. The sudo and pine packages we used

are official packages from Red Hat and Debian respectively,
while the sudo update was custom-made for OpenBSD.

In our tests, the nodes gathered information about their
system configuration (operating system name, version, etc.)
and registered them with the supernode over an SSL con-
nection. We then simulated the scenario when a new up-
date is available. The supernode checks its updates database
with those of the registered nodes configuration, and if there
are matches (for example, Red Hat and pine, as they were
mapped in the database earlier), the appropriate update was
delivered to the node and applied after an integrity check.
Table 3 shows the download speed (S1) and installation
speed S2 (including integrity check time) for the updates,
the hosts’ CPU speed, update method (M), and update size.
The update installation speed S2 should be read relative to
the CPU speed and update size. The pine update applica-
tion process took 19.76s because of its large size (2.63MB)
and it was run on a slow CPU (166MHz). The software
updates distribution engine, the prototype, and these results
are explained in greater detail in our earlier work [23].

Table 3. Updates applied
Update M CPU Size S1 S2
sudo cus- 400MHz 71.2KB 0.06s 0.06s
1.6.5 tom (Host B)
pine rpm 166MHz 2632KB 1.55s 19.76s
4.44 (Host C)
wu-ftpd dpkg 700MHz 250KB 0.24s 4.1s
2.6.1 (Host D)

5.1. Ongoing and future implementation

We are now in the process of rebuilding the test network
for future IDF development. To test interoperability, we are
upgrading the test systems and adding new machine archi-
tectures, operating systems, firewalls, and intrusion detec-
tion systems into the network. To test scalability issues such
as the feasibility of scaling from a small number to a large
number of nodes (as mentioned in Section 2.2), we will sim-
ulate collectives and super-collectives using multiple virtual
machines running on VMware [2]. We are also extending
the test network into the wireless arena, with particular in-
terest in Bluetooth [1] and IEEE 802.11b.

We have already started the design of the other compo-
nents. As the next stage of our research, we intend to con-
tinue developing the communication and recovery subsys-
tem, as well as the Intrusion Detection Force Adaptation
Layer (IDFAL). Once these two foundational components
are ready, we will then develop the core components con-
sisting of the data collection sensor, analysis engine, and
response engine. Next, we will revisit the software updates

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

distribution engine and start development of the vulnerabil-
ity database interface and plugin extension engine.

As we proceed with the design and implementation of
the IDF components, one of the most difficult problems we
face is the identification of the information that should be
exchanged among the IDF nodes. As stated earlier in Sec-
tion 2, we have to consider requirements such as the orga-
nizational need for data privacy but at the same time, allow
the information to be useful. It would be pointless to ex-
change information that is unnecessary, as this would result
in useless alerts. This has been a significant challenge since
the beginning of the IDF project, and we are working on
methods to address it.

Another interesting challenge has to do with the fact that
the IDF is intended to be survivable. The IDF will undoubt-
edly face attacks against itself, and in fact, this is expected.
A successful attack against the IDF from the Internet may
affect IDF communications and responses. With this in
mind, it would be worth considering out-of-band commu-
nication methods which are non-Internet-based, thus pro-
viding alternative communication avenues and making the
IDF less susceptible to such attacks.

6. Related work

The architecture and design of the IDF were inspired by
many technologies, ranging from distributed intrusion de-
tection systems to peer-to-peer systems. The distributed in-
trusion detection systems include DIDS [20], which uses
the paradigm of distributed data collection and centralized
data processing. CSM [27] uses a true peer-based and to-
tally decentralized approach. Another influential DIDS was
AAFID [4], which is an agent-based DIDS which uses a
three-level hierarchy. Low-level agents perform data col-
lection and low-level analysis. The results are sent to
transceivers, which in turn analyze and pass their results to
monitors, the highest-level entity in the hierarchy. AAFID
achieves scalability by allowing monitors to be “hooked” to
one another, thus creating a DIDS. AAFID is no longer sup-
ported by its authors. Other influential IDSs include EMER-
ALD [18] and GrIDS [21], and intrusion detection research
performed by Kruegel and Toth [14], and Vigna, Kemmerer,
and Blix [25].

Apart from IDSs, the IDF architecture also draws some
ideas from Internet-Scale Operating Systems (ISOSs) such
as Chord [22], OceanStore [15], and Tapestry [28]. Peer-
to-peer technologies [17] like Gnutella, distributed.net, and
Freenet [8] also influenced a few of our design decisions.

7. Conclusion

We described the architecture and design of an Internet-
scale Intrusion Detection Force (IDF), which is a virtual in-

frastructure on top of the current Internet. Its main goal is
to defend organizations and protect the Internet as a whole,
through secure inter-organizational information sharing and
intelligent distributed data analysis and response. We be-
lieve this infrastructure has many applications, the most sig-
nificant of which is its ability to detect, prevent, and respond
to highly distributed and stealthy attacks.

Acknowledgments

We would like to thank the anonymous reviewers of this
paper for their helpful comments and suggestions.

References

[1] The Official Bluetooth Website. http://www.bluetooth.com/.
[2] VMware. http://www.vmware.com/.
[3] S. Axelsson. Intrusion detection systems: A survey and

taxonomy. Technical Report 99-15, Dept. of Computer
Engineering, Chalmers University of Technology, Sweden,
March 2000.

[4] J. S. Balasubramaniyan, J. O. G. Fernandez, D. Isacoff,
E. Spafford, and D. Zamboni. An architecture for intrusion
detection using autonomous agents. Technical Report 98/05,
COAST Laboratory, Purdue University, May 1998.

[5] A. Beguelin, E. Seligman, and P. Stephan. Application level
fault tolerance in heterogeneous networks of workstations.
Journal of Parallel and Distributed Computing, 43(2):147–
155, 1997.

[6] S. M. Bellovin. Security weaknesses in the TCP/IP proto-
col suite. Computer Communications Review, 2(19):32–48,
1989.

[7] S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, J. Row, S. Staniford-Chen, R. Yip, and D. Zerkle.
The design of GrIDS: A graph-based intrusion detection sys-
tem. Technical report, Department of Computer Science,
University of California at Davis, January 1999.

[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet:
A distributed anonymous information storage and retrieval
system. Designing Privacy Enhancing Technologies: Inter-
national Workshop on Design Issues in Anonymity and Un-
observability, LNCS 2009, 2001.

[9] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. A.
Longstaff, and N. R. Mead. Survivability: Protecting your
critical systems. In Proceedings of the International Confer-
ence on Requirements Engineering, Colorado Springs, April
1998.

[10] J. Haines, V. Lakamraju, I. Koren, and C. M. Krishna.
Application-level fault tolerance as a complement to system-
level fault tolerance. The Journal of Supercomputing, 16:53–
68, 2000.

[11] J. W. Haines. Application-level fault tolerance. Master’s
thesis, University of Massachusetts Amherst, May 1999.

[12] J. Hochberg, K. Jackson, C. Stallings, J. F. McClary,
D. DuBois, and J. Ford. NADIR: An automated system for
detecting network intrusion and misuse. Computers and Se-
curity, 12(3):235–248, May 1993.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

[13] Internet Engineering Task Force. Intrusion
Detection Exchange Format (idwg) charter.
http://www.ietf.org/html.charters/idwg-charter.html.

[14] C. Kruegel and T. Toth. Distributed pattern detection for
intrusion detection. In Proceedings of the Network and Dis-
tributed System Security, San Diego, CA, February 2002.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, and H. Weatherspoon.
OceanStore: An architecture for global-scale persistent stor-
age. In Proceedings of Ninth International Conference on
Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS 2000), November 2000.

[16] P. Mockapetris. Domain names: Concepts and facilities,
RFC 1034, November 1987.

[17] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly, 2001.

[18] P. A. Porras and P. G. Neumann. EMERALD: Event mon-
itoring enabling responses to anomalous live disturbances.
In Proceedings of the 20th National Information System Se-
curity Conference. National Institute of Standards and Tech-
nology, October 1997.

[19] SecurityFocus. SecurityFocus Vulnerability Database.
http://www.securityfocus.com/corporate/products/vdb.

[20] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heber-
lein, C.-L. Ho, K. N. Levitt, B. Mukherjee, S. E. Smaha,
T. Grance, D. M. Teal, and D. Mansur. DIDS (Distributed In-
trusion Detection System) - motivation, architecture, and an
early prototype. In Proceedings of the 14th National Com-
puter Security Conference, pages 167–176, October 1991.

[21] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger,
J. Frank, J. Hoagland, K. Levitt, C. Wee, R. Yip, and
D. Zerkle. GrIDS a graph-based intrusion detection sys-
tem for large networks. In Proceedings of the 19th National
Information Security Conference, Baltimore, MD, October
1996.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM SIG-
COMM’01, San Diego, CA, 2001.

[23] L. Teo and Y. Zheng. Secure and automated software up-
dates across organizational boundaries. In Proceedings of
the 2002 IEEE Workshop on Information Assurance, pages
212–219, United States Military Academy, West Point, NY,
June 2002.

[24] The MITRE Corporation. Common Vulnerabilities and Ex-
posures (CVE). http://cve.mitre.org/.

[25] G. Vigna, R. A. Kemmerer, and P. Blix. Designing a web
of highly-configurable intrusion detection sensors. In Pro-
ceedings of the 4th International Symposium on Recent Ad-
vances in Intrusion Detection (RAID 2001), pages 69–84,
Davis, CA, October 2001.

[26] M. Welz and A. Hutchison. Interfacing trusted applications
with intrusion detection systems. In Proceedings of the 4th
International Symposium on Recent Advances in Intrusion
Detection (RAID 2001), pages 37–52, Davis, CA, October
2001.

[27] G. B. White, E. A. Fisch, and U. W. Pooch. Cooperating
security managers: A peer-based intrusion detection system.
IEEE Network, 10(1):20–23, January/February 1996.

[28] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UCB, 2001.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

