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Picture Gesture Authentication: Empirical Analysis, Automated
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Picture gesture authentication has been recently introduced as an alternative login experience to text-based
password on touch-screen devices. In particular, the newly on market Microsoft Windows 8TM operating
system adopts such an alternative authentication to complement its traditional text-based authentication.
We present an empirical analysis of picture gesture authentication on more than 10,000 picture passwords
collected from more than 800 subjects through online user studies. Based on the findings of our user studies,
we propose a novel attack framework that is capable of cracking passwords on previously unseen pictures
in a picture gesture authentication system. Our approach is based on the concept of selection function that
models users’ thought processes in selecting picture passwords. Our evaluation results show the proposed
approach could crack a considerable portion of picture passwords under different settings. Based on the
empirical analysis and attack results, we comparatively evaluate picture gesture authentication using a set
of criteria for a better understanding of its advantages and limitations.
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1. INTRODUCTION

Using text-based passwords that include alphanumerics and symbols on touch-screen
devices is unwieldy and time-consuming due to small-sized screens and the absence of
physical keyboards. Consequently, mobile operating systems, such as iOS and Android,
integrate a numeric Personal Identification Number (PIN) and a draw pattern as al-
ternative authentication schemes to provide user-friendly login services. However, the
password spaces of these schemes are significantly smaller than text-based passwords,
rendering them less secure and easy to break with some knowledge of device owners
[Bonneau et al. 2012d].
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Many graphical password schemes—including DAS [Jermyn et al. 1999], Face
[Brostoff and Sasse 2000], Story [Davis et al. 2004], PassPoints [Wiedenbeck et al.
2005a], and BDAS [Dunphy and Yan 2007]—have been proposed in the past decade
(for more, please refer to Dhamija and Perrig [2000], Thorpe and Van Oorschot [2004],
Suo et al. [2005], Chiasson et al. [2007], Gao et al. [2008], Bicakci et al. [2009], Biddle
et al. [2011], and Chiasson et al. [2012]). As an outcome of these research efforts, the
Windows 8TM operating system comes with a picture password authentication system,
namely Picture Gesture Authentication (PGA) [Johnson et al. 2012], which is an in-
stance of Background Draw-a-Secret (BDAS) schemes [Dunphy and Yan 2007]. This
new authentication mechanism hit the market with miscellaneous computing devices
including personal computers and tablets [Microsoft 2013]. Consequently, it is imper-
ative to examine the user experiences with and potential attacks on this new scheme
to understand its advantages and limitations.

To understand user experiences in PGA, we collected more than 10,000 PGA pass-
words from more than 800 subjects through online user studies within a span of several
months. Here, we provide an empirical analysis of the collected passwords. In partic-
ular, we are interested in how subjects choose background pictures, where they prefer
to draw gestures, and what gesture orders and types they like to use. Our findings
from user-chosen passwords show interesting patterns that are consistent with pre-
vious research investments on click-based password schemes [Chiasson et al. 2009;
Van Oorschot et al. 2010; van Oorschot and Thorpe 2011], in which password com-
position patterns and predictable characteristics were found. In addition, we present
memorability analysis results on passwords that were collected over months.

Harvesting characteristics from passwords of a target picture and exploiting hot-
spots and geometric patterns on the target picture have proved effective for attacking
click-based schemes [Dirik et al. 2007; Thorpe and Van Oorschot 2007; Salehi-Abari
et al. 2008]. However, PGA allows complex gestures other than a simple click. Moreover,
a new feature in PGA, autonomous picture selection by users, makes it unrealistic to
harvest passwords from the target pictures for learning. In other words, the target
picture is previously unseen to any attack models. All existing attack approaches lack
a generic knowledge representation of user choice in password selection that should
be abstracted from specific pictures. The absence of this abstraction makes existing
attack approaches impossible or abysmal (if possible) to work on previously unseen
target pictures.

To attack PGA passwords, we propose a new attack framework that represents and
learns users’ password selection patterns from training datasets and generates ranked
password dictionaries for previously unseen target pictures. To achieve this, we build
generic knowledge of user choices from the abstraction of hotspots in pictures. The core
of our framework is the concept of a selection function that simulates users’ selection
processes in choosing their picture passwords. Our approach is not coupled with any
specific pictures. Hence, the generation of a ranked password list is then transformed
into the generation of a ranked selection function list, which is then executed on the
target pictures. We present two algorithms for generating the selection function list:
one algorithm is designed to appropriately develop an optimal guessing strategy for a
large-scale training dataset, and the other deals with the construction of high-quality
dictionaries even when the size of the training dataset is small. We also discuss the
implementation of our attack framework over PGA and evaluate the efficacy of our
proposed approach with the collected datasets.

To further examine the benefits and limitations of PGA, we evaluate if it also provides
benefits that other authentication schemes offer based on results from user experience
studies and attack evaluations. We consider four categories of criteria: Usability, De-
ployability, Security, and Privacy (UDSP). Our evaluation criteria are extended from the
Usability-Deployability-Security (UDS) evaluation framework [Bonneau et al. 2012b],
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Fig. 1. Key steps in picture gesture authentication.

which was designed to evaluate web authentication schemes. To explain the newly
introduced benefits, we evaluate four legacy authentication schemes: text-based pass-
words, Persuasive Cued Click-Points (PCCP) [Chiasson et al. 2012], Fingerprint, and
RSA SecurID. We also evaluate and compare two other popular authentication schemes
on touch-screens, namely, draw pattern and PIN, using our extended evaluation frame-
work.

The contributions of this article are summarized as follows:

—We compile two datasets of PGA usage from user studies1 and perform an empirical
analysis on collected data to understand user choice in background picture, gesture
location, gesture order, and gesture type.

—We introduce the concept of a selection function that abstracts and models users’
selection processes when selecting their picture passwords. We demonstrate how
selection functions can be automatically identified from training datasets.

—We propose and implement a novel attack framework based on selection functions.
We evaluate our attack framework using two attack models: namely, nontargeted
attack and targeted attack.

—We comparatively evaluate PGA using a new UDSP evaluation framework that is
extended from the UDS authentication evaluation framework by considering more
usability, security, and privacy benefits.

The remainder of the article is organized as follows. Section 2 gives an overview of
picture gesture authentication. Section 3 discusses our empirical analysis on passwords
of PGA that were collected from two online studies. In Section 4, we illustrate the idea
of using selection functions to model users’ password creation processes and build an
attack framework based on it. Section 5 presents the implementation details of our
proposed attack framework. Section 6 presents the evaluation results of nontargeted
attacks. Section 7 presents the evaluation results of targeted attacks. Section 8 presents
a UDSP framework and comparative evaluation results of PGA. We discuss several
research issues in Section 9, followed by the related work in Section 10. Section 11
concludes the article.

2. AN OVERVIEW OF PICTURE GESTURE AUTHENTICATION

Figure 1 shows the key steps of using PGA. Like other login systems, Windows 8TM

PGA has two independent phases: registration and authentication. In the registration
stage, a user chooses a picture from his or her local storage as the background, as
shown in Figure 1(a). PGA does not force users to choose pictures from a predefined
repository. Even though users may choose pictures from common folders, such as the
Picture Library” folder in Windows 8TM, the probability of different users choosing an
identical picture as the background for their passwords is low. This phenomenon re-
quires potential attack approaches to have the ability to perform attacks on previously

1These datasets with detailed information are available at http://sefcom.asu.edu/pga/.
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Table I. Password Space Comparison with Different Schemes

Length Draw Pattern∗ 4-digit PINs∗�• Text-based Password∗�•
1 9 10 90
2 56 100 8,100
3 360 1,000 729,000
4 2,280 10,000 65,610,000
5 14,544 100,000 5,904,900,000

Used in ∗ Android, � iOS, • Windows 8.

unseen pictures. PGA then asks the user to draw exactly three gestures on the picture
with his or her finger, mouse, stylus, or other input devices depending on the equipment
he or she is using, as illustrated in Figure 1(b). A gesture could be viewed as the cursor
movements between a pair of “finger-down” and “finger-up” events. PGA does not allow
free-style gestures, but only accepts tap (indicating a location), line (connecting areas
or highlighting paths), and circle (enclosing areas) [Pace 2011a]. If the user draws a
free-style gesture, PGA will convert it to one of the three recognized gestures. For in-
stance, a curve would be converted to a line, and a triangle or oval will be stored as a
circle. To record these gestures, PGA divides the longest dimension of the background
image into 100 segments and the short dimension on the same scale to create a grid,
then stores the coordinates of the gestures. The line and circle gestures are also associ-
ated with additional information such as directions of the finger movements, as shown
in Figure 1(c).

Once a picture password is successfully registered, the user may login to the system
by drawing corresponding gestures instead of typing his or her text-based password.
PGA first brings the background image on the screen that the user chose in the reg-
istration stage. Then, the user reproduces the drawings he or she set up as his or
her password. PGA compares the input gestures with the previously stored ones from
the registration stage, as shown in Figure 1(d). The comparison is not strictly rigid
but shows tolerance to some extent. If any of gesture type, ordering, or directionality
is wrong, the authentication fails. When they are all correct, an operation is further
taken to measure the distance between the input password and the stored one. For
tapping, the gesture passes authentication if the predicate 12 − d2 ≥ 0 is satisfied,
where d denotes the distance between the tap coordinates and the stored coordinates.
The starting and ending points of line gestures and the center of circle gestures are
measured with the same predicate [Pace 2011a].

The differences between PGA and the first BDAS scheme proposed in Dunphy and
Yan [2007] include: (i) in PGA, a user uploads his or her picture as the background
instead of choosing one from a predefined picture repository; (ii) a user is only allowed to
draw three specific types of gestures in PGA, whereas BDAS takes any form of strokes.
The first difference makes PGA more secure than the previous scheme because a
password dictionary could only be generated after the background picture is acquired.
However, the second characteristic reduces the theoretical password space from its
counterpart.

Accurate estimation of the PGA password space needs some detailed information,
such as the circle radius tolerance, that is not disclosed. Therefore, the password space
calculation presented here is taken from Pace [2011a], where Pace et al. quantified
the size of theoretical password space of PGA and compared it with other password
schemes. As shown in Table I, the password space for PGA is much bigger than
other schemes, given the same password length. Pace et al. also considered those
cases in which users only draw on some point-of-interests in the picture. Table II
shows the password space with different numbers of point-of-interests. If a picture has
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Table II. Password Space Comparison with PGA

Length Picture Password• [Pace 2011a]
tap line circle combined

1 270 335 1,949 2,554
2 23,535 34,001 846,183 1,581,773
3 2,743,206 4,509,567 412,096,718 1,155,509,083=230.1

4 178,832,265 381,311,037 156,687,051,477 612,157,353,732
5 15,344,276,658 44,084,945,533 70,441,983,603,740 398,046,621,309,172

20 point-of-interests, its password space is 227.7 which is larger than text-based pass-
words with a length four.

3. AN EMPIRICAL ANALYSIS OF PICTURE GESTURE AUTHENTICATION PASSWORDS

In this section, we present an empirical analysis on user choice in PGA by analyzing
data collected from our user studies. Our empirical study is based on human cognitive
capabilities. Since human cognition of pictures is limited in a similar way to their
cognition of texts, the picture passwords selected by users are probably constrained by
human cognitive limits that would be similar to those in text-based passwords [Yuille
1983].

3.1. Experiment Design

For the empirical study, we developed a web-based PGA system for conducting user
studies. The developed system resembles Windows 8TM PGA in terms of its workflow
and appearance. The differences between our implementation and Windows 8TM PGA
include: (i) our system works with major browsers in desktop PCs and tablets, whereas
Windows 8TM PGA is a standalone program; and (ii) some information, such as the
criterion for circle radius comparison, is not disclosed. In other words, our implemen-
tation and Windows 8TM PGA differ in some criteria (we regard radiuses the same if
their difference is smaller than 6 segments in grid). In addition, our developed system
has a tutorial page that includes a video clip teaching users how to use the system and
a test page on which users can practice gesture drawings.

Our study protocol, including the type of data we plan to collect and the questionnaire
we plan to use, was reviewed by our institution’s IRB. The questionnaire consisted of
four sections: (i) general information of the subject (gender, age, level of education
received, and race), (ii) general feeling toward PGA (is it easier to remember, faster to
input, harder to guess, and easier to observe than text-based password), (iii) selection
of background picture (preferred picture type), and (iv) selection of password (preferred
gesture location and type).

We started user studies after receiving the IRB approval letter in August 2012 and
compiled two datasets from August 2012 to January 2013 using this system. Dataset-1
was acquired from a testbed of picture password used by an undergraduate computer
science class. Dataset-2 was produced by advertising our studies in schools of engineer-
ing and business in two universities and Amazon’s Mechanical Turk crowdsourcing
service that has been used in security-related research work [Kelley et al. 2012]. Turk-
ers who had finished more than 50 tasks and had an approval rate of greater than 60%
were qualified for our user study.

For registration, subjects in Dataset-1 were asked to provide their student IDs for a
simple verification, after which they were guided to upload a picture, register a pass-
word, and then use the password to access class materials including slides, homework,
assignments, and projects. Subjects used this system for the Fall 2012 semester, which
lasted three and a half months at our university. If subjects forgot their passwords
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Fig. 2. Background pictures used in Dataset-2.

during the semester, they would inform the teaching assistant, who reset their pass-
words. Subjects were allowed to change their passwords by clicking a change password
link after login. There were 56 subjects involved in Dataset-1 resulting in 58 unique
pictures, 86 registered passwords, and 2,536 login attempts.

Instead of asking subjects to upload pictures for Dataset-2, we chose in advance 15
pictures, as shown in Figure 2, from the PASCAL Visual Object Classes Challenge 2007
dataset.2 We chose these pictures because they represent a diverse range of pictures
in terms of category (portrait, wedding, party, bicycle, train, airplane, and car) and
complexity (pictures with few and plentiful stand-out regions). Subjects were asked to
choose one password for each picture by pretending that it was protecting their bank
information. The 15 pictures were presented to subjects in a random order to reduce the
dependency of password selection on picture presentation order. A total of 762 subjects
participated in the Dataset-2 collection resulting in 10,039 passwords. The number of
passwords for each picture in the Dataset-2 varies slightly, with an average of 669,
because some subjects quit the study without setting up passwords for all pictures.

For both datasets, subjects were asked to finish the questionnaire to help us under-
stand their experiences. We collected 685 (33 for Dataset-1, 652 for Dataset-2) copies
of survey answers in total. According to the demographic-related inquiries in the exit
survey, 81.8% subjects in Dataset-1 are self-reported male and 63.6% are between 18
and 24 years old. Participants in Dataset-2 are more diverse with 64.4% male, 37.2%
18–24 years old, 45.4% 25–34 years old, and 15.0% 35–50 years old. Even though the
subjects in our studies do not represent all possible demographics, the data collected
from them represent the most comprehensive PGA usage so far. Their tendencies could
provide us with significant insights into user choice in PGA.

3.2. Findings

This section summarizes our empirical analysis on the our datasets by presenting five
findings.

Finding 1. Relationship Between Background Picture and User’s Identity, Personal-
ity, or Interests.

2http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.
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We analyzed all unique pictures3 in Dataset-1, and the background pictures chosen
by subjects range from celebrities to system screenshots. We categorized them into six
classes: people (27/58), civilization (7/58), landscape (3/58), computer-generated picture
(14/58), animals (6/58), and others (1/58).

For the category of “people,” 6 pictures were categorized as “me,” 12 pictures were
subjects’ families, 4 were pictures of subjects’ friends, and 5 were celebrities. The
analysis of answers to the survey question “Could you explain why you choose such
types of pictures?” revealed two opposite attitudes toward using picture of people. The
advocates for such pictures considered it more friendly (e.g., “The image was special to
me so I enjoy seeing it when I log in”), easier for remembering passwords (e.g., “Marking
points on a person is easier to remember”), and as making passwords more secure (e.g.,
“The picture is personal so it should be much harder for someone to guess the password”).
However, other participants believed their choice could leak their identity or privacy
(e.g., “revealing myself or my family to anyone who picks up the device”). They preferred
other types of pictures because it was “less personal if someone gets my picture” and
“landscape usually doesn’t have any information about who you are.”

Fourteen pictures in Dataset-1 could be categorized as computer-generated pictures,
including computer game posters, cartoons, and some geometrical graphs; 24.1% (14/58)
of such pictures were observed in Dataset-1, but the survey results indicated that
6.4% (42/652) of participants were in such a usage pattern in Dataset-2 based on the
following survey question: “Please indicate the type of pictures you prefer to use as
the background.” We concluded that the population characteristics (male, aged 18–24,
college students) in Dataset-1 were the major reason behind this phenomenon. The
answers to “Could you explain why you choose such types of pictures?” in Dataset-1
supported this conjecture: “computer game is something I am interested [in] it” and
“computer games picture is personalized to my interests and enjoyable to look at.”

It is obvious that pictures with personally identifiable information may leak personal
information. However, it is less obvious that even pictures with no personally identi-
fiable information may provide some clues that may reveal the identity or persona
of a device owner. Traditional text-based passwords do not have this concern as long
as the password is kept secure. Previous graphical password schemes, such as Face
and PassPoints, do not have this concern either because pictures are selected from a
predefined repository.

Finding 2. Gestures on Points of Interest.

The security of BDAS schemes mostly relies on the location distribution of users’
gestures. It is most secure if the locations of users’ gestures follow a uniform distribution
on any picture. However, such passwords would be difficult to remember and may not
be preferable to users. By analyzing the collected passwords, we noticed that subjects
frequently chose standout regions (Points of Interest, PoIs) on which to draw. As shown
in Table III, only 9.8% subjects claimed to choose locations randomly without caring
about the background picture. The observation is supported by survey answers to
“Could you explain the way you choose locations to perform gestures?”: “If I have to
remember it; it [would] better stand out.” and “Something that would make it easier to
remember.”

Even though the theoretical password space of PGA is larger than text-based pass-
words of the same length, a background picture affects user choice in gesture location,
reducing the feasible password space tremendously. We summarize three popular ways
that subjects used to identify standout regions: (i) finding regions with objects (e.g.,

3Due to the confidentiality agreement with the subjects, we are not able to share pictures that are marked
as having personally identifiable information.
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Table III. Survey Question: Which of the Following Best Describes What
You Are Considering When You Choose Locations to Perform Gestures?

Dataset
Multi-choice Answers 1 2 Overall
I try to find locations where special objects are,
such as head, eye, clock, car, badge, etc.

24 (72.7%) 389 (59.6%) 413 (60.3%)

I try to find locations where some special shapes
are, such as circle and line, etc.

8 (24.2%) 143 (21.9%) 151 (22.1%)

I try to find locations where colors are different
from their surroundings, such as a red apple in a
green lemon pile, etc.

0 (0%) 57 (8.7%) 57 (8.3%)

I randomly choose a location to draw without
thinking about the background picture.

1 (3.0%) 66 (10.1%) 67 (9.8%)

Table IV. Attributes of Most Frequently Used PoIs

Attributes # Gesture # Password # Subject
Eye 36 20 19
Nose 21 13 10

Hand/Finger 6 5 4
Jaw 5 3 3

Face (Head) 4 2 2

Fig. 3. Two versions of Starry Night and corresponding passwords.

“I chose eyes and other notable features” and “I chose locations such as nose, mouth or
whole face’)’; (ii) finding regions with remarkable shapes (e.g., “if there is a circle there
I would draw a circle around that”); and (iii) finding regions with outstanding colors.
The detailed distribution of these selection processes is shown in Table III: 60.3% of
subjects prefer to find locations where special objects catch their eyes, whereas 22.1%
of subjects would rather draw on some special shapes.

Finding 3. Similarities Across Points of Interest.

We analyzed the attributes of PoIs that users preferred to draw on. We paid more
attention to pictures of people because this was the most popular category. In the 31
registered passwords for the 27 pictures of people uploaded by 22 subjects in Dataset-1,
we analyzed the patterns of PoI choice. As shown in Table IV, 36 gestures were drawn
on eyes and 21 gestures were drawn on noses. Other locations that attracted subjects
to draw included hand/finger, jaw, face (head), and ear. Interestingly, 19 subjects out of
22 (86.3%) drew on eyes at least once, whereas 10 subjects (45.4%) performed gestures
on noses. The tendencies among different subjects to choose similar PoIs are common
in other picture categories as well. Figure 3 shows another example where two subjects
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Table V. Numbers of Gesture-Order Patterns

H+ H- V+ V- DIAG Others
Dataset-1 43

50.0%
5

5.8%
16

18.6%
4

4.6%
22

25.5%
18

20.9%
Dataset-2 3144

31.3%
1303
12.9%

1479
14.7%

887
8.8%

2621
26.1%

3326
33.1%

Table VI. Numbers of Gesture Type Combinations and Average Time Spent on Creating Them

3×t 3×l 3×c 2×t+l 2×t+c

Dataset-1 # 60 3 0 9 1
Average Time (Seconds) 5.74 12.39 N/A 10.12 21.56

Dataset-2 # 3438 1447 253 1211 380
Average Time (Seconds) 4.33 7.11 9.96 6.02 6.14

2×l+t 2×l+c 2×c+t 2×c+l t+l+c

Dataset-1 # 7 1 0 0 5
Average Time (Seconds) 11.17 17.51 N/A N/A 11.22

Dataset-2 # 1000 622 192 442 1054
Average Time (Seconds) 7.72 9.98 8.78 10.19 9.37

uploaded two versions of Starry Night in Dataset-1. The passwords they chose show
strikingly similar patterns, with three taps on stars, even if there is no single gesture
location overlap.

Finding 4. Directional Patterns in PGA Password.

Salehi-Abari et al. [2008] suggest that many passwords in click-based systems follow
some directional patterns. We are interested in whether PGA passwords show similar
characteristics. For simplicity, we consider the coordinates of tap and circle gestures
as their locations and the middle point of the starting and ending points of line as its
location. If the x or y coordinate of a gesture sequence follows a consistent direction
regardless of the other coordinate, we say the sequence follows a LINE pattern. We
divide LINE patterns into four categories: H+, denoting left-to-right (xi ≤ xi+1); H-,
denoting right-to-left (xi ≥ xi+1); V+, denoting top-to-bottom (yi ≤ yi+1); and V-, denoting
bottom-to-top (yi ≥ yi+1). If a sequence of gestures follows a horizontal pattern and a
vertical pattern at the same time, we say it follows a DIAG pattern.

We examined the occurrence of each LINE and DIAG pattern in the collected data.
As shown in Table V, more than half of all passwords in both datasets exhibited some
LINE patterns, and a quarter of them exhibited some DIAG patterns. Among four
LINE patterns, H+ (drawing from left to right) was the most popular, with 50.0% and
31.3% occurrences in Dataset-1 and Dataset-2, respectively. V+ (drawing from top to
bottom) was the second most popular, with 18.6% and 14.7% occurrences in the two
datasets, respectively. This finding shows that it is reasonable to use gesture-order
patterns as one heuristic factor to prioritize generated passwords.

Finding 5. Time Disparity among Different Combinations of Gesture Types.

We analyzed all registered passwords to understand the gesture patterns and the
relationship between gesture type and input time. For 86 registered passwords (258
gestures) in Dataset-1, 212 (82.1%) gesture types were taps, 39 (15.1%) were lines, and
only 7 (2.7%) were circles. However, the corresponding occurrences for 10,039 regis-
tered passwords (30,117 gestures) in Dataset-2 were 15,742 (52.2%), 10,292 (34.2%),
and 4,083 (13.5%), respectively. Obviously, subjects in Dataset-2 chose more diverse
gesture types than did subjects in Dataset-1. As shown in Table VI, there was a strong
connection between the time subjects spent on reproducing passwords and the gesture
types they chose. Three taps, the most common gesture combination, appeared in both
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Fig. 4. Memorability and usability.

datasets with the lowest average time (5.74 seconds and 4.33 seconds in correspond-
ing datasets). On the other hand, passwords with two circles and one line took the
longest average input time (10.19 seconds in Dataset-2). In the user studies, subjects
in Dataset-2 were asked to set up passwords by pretending they were protecting their
bank information. However, subjects in Dataset-1 actually used these passwords to
access class materials that they accessed more than four times a week on average. This
may be a reason why subjects in Dataset-1 preferred passwords with simpler gesture
type combinations that are easier to reproduce quickly.

3.3. Memorability and Usability Analysis

The tolerance introduced in PGA is a tradeoff between security and usability. To quan-
tify this tradeoff, we calculate the distance between input PGA passwords with the
registered ones. When the types or directions of gestures do not match, we regard
input passwords incomparable with the registered ones. Otherwise, the distance is
defined as the average distance of all gestures.

In the 2,536 login attempts collected in Dataset-1, 422 were unsuccessful, in which
146 are type or direction errors and 276 are distance errors. Figure 4(a) shows the
distance distribution for those passwords whose distance is less than 10, and the red
line denotes the threshold for being classified as successful. The result shows that
the current setup in our system is quite reasonable to capture most closely presented
passwords.

Figure 4(b) shows the average time in seconds that subjects spent on registering,
confirming, and reproducing passwords: x = 1 denotes the registration, x = 2 denotes
the conformation, and all others denote the later login attempts. Note that the average
time for registration is 7.43 seconds, whereas 4.53 seconds are taken for the confir-
mation. With subjects getting used to the picture password system, the average time
spent for successful logins is reduced to as low as 2.51 seconds. On the other hand, the
average time spent on all unsuccessful login attempts is 5.86 seconds.

4. ATTACK FRAMEWORK

In this section, we present an attack framework on Windows 8TM PGA, leveraging the
findings addressed in Section 3. Our attack framework takes the target picture’s PoIs, a
set of learning pictures’ PoIs, and corresponding password pairs as input and produces
a list of possible passwords, ranked in descending order of password probabilities.

Next, we discuss the attack models, followed by the representations of picture pass-
word and PoI. We then illustrate the idea of a selection function and its automatic iden-
tification. We also present two algorithms for generating a selection function sequence
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list and describe how it can generate picture password dictionaries for previously un-
seen target pictures.

4.1. Attack Models

Depending on the resources an attacker possesses, we articulate three different attack
models. In Pure Brute-force Attack, an attacker blindly guesses the picture password
without knowing any information about the background picture and the users’ tenden-
cies. The password space in this model is 230.1 in PGA [Pace 2011a]. In the PoI-assisted
Brute-force Attack, an attacker assumes the user only performs drawings on PoIs of the
background picture and this model randomly guesses passwords on identified PoIs. The
password space for a picture with 20 PoIs in this model is 227.7 [Pace 2011a]. Salehi-
Abari et al. [2008] designed an approach to automatically identify hotspots in a picture
and generate passwords on them. In the Knowledge-based PoI-assisted Attack, in ad-
dition to the assumption used for PoI-assisted brute-force attack, an attacker ought to
have some knowledge about the password patterns learned from collected picture and
password pairs (not necessarily from the target user or picture). The guessing space in
this model is the same as that in PoI-assisted brute-force attack. However, the gener-
ated dictionaries in this model are ranked with the higher possibility passwords at the
top of the list.

Attack schemes could also be divided into two categories based on whether or not an
attacker has the ability to attack previously unseen pictures. The method presented in
Salehi-Abari et al. [2008] is able to attack previously unseen pictures for click-based
graphical passwords. It uses click-order heuristics to generate partially ranked dictio-
naries. However, this approach cannot be applied directly to BDAS schemes because
the gestures allowed in such schemes are much more complex, and the order-based
heuristics could not capture users’ selection processes accurately. In contrast, our at-
tack framework could abstract generic knowledge of user choice in picture password
schemes. In addition, as a working knowledge-based PoI-assisted model, it is able to
generate ranked dictionaries for previously unseen pictures.

Based on the data origin the attacker harvests from users, we categorize two attack
mode: in nontargeted attack mode, the training dataset does not consist of any picture
and password pair from the target user. The guessing path carried out for a nontargeted
attack is not contingent on the knowledge of target user’s individual tendencies, but
insteadis based on the habits of users in a training dataset. In targeted attack mode, the
attacker has possession of some picture and password pairs collected from the target
user. Hence, the guessing path is more specific to the target user. Our algorithms
support both attack modes.

4.2. Password and PoI Representations

We first formalize the representation of a password in PGA with the definition of a
Location-Dependent Gesture (LdG) that represents a single gesture on some locations
in a picture.

Definition 1. A Location-Dependent Gesture (LdG), denoted as π, is a 7-tuple 〈g, x1,
y1, x2, y2, r, d〉 that consists of gesture’s type, location, and other attributes.

In this definition, g denotes the type of LdG; it must be one of tap, line, and cir-
cle. A tap LdG is further represented by the coordinates of a gesture 〈x1, y1〉. A line
LdG is denoted by the coordinates of the starting and ending points of a gesture
〈x1, y1〉 and 〈x2, y2〉. A circle LdG is denoted by the coordinates of its center 〈x1, y1〉,
radius r, and direction d ∈ {+,−} (clockwise or not). We define the password space of
location-dependent gesture as � = �tap

⋃
�line

⋃
�circle. A valid PGA password is a
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length-three sequence of LdGs denoted as �π , and the PGA password space could be
denoted as ��.

A point of interest is a standout region in a picture. PoIs could be regions with
semantic-rich meanings, such as face (head), eye, car, clock, and the like. Also, they
could stand out in terms of their shapes (line, rectangle, circle, etc.) or colors (red, green,
blue, etc.). We denote a PoI by the coordinates of its circumscribed rectangle and some
describing attributes. A PoI is a 5-tuple 〈x1, y1, x2, y2, D〉, where 〈x1, y1〉 and 〈x2, y2〉 are
the coordinates of the top-left and bottom-right points of the circumscribed rectangle,
and D ⊆ 2D is a set of attributes that describe this PoI. D has three subcategories
Do,Ds, and Dc and four wildcards ∗o, ∗s, ∗c, and ∗, where Do = {head, eye, nose, . . . },
Ds = {line, rectangle, circle, . . . }, and Dc = {red, blue, yellow, . . . }. Wildcards are used
when no specific information is available. For example, if a PoI is identified with an
objectness measure [Alexe et al. 2012] that gives no semantics about the identified
region, we mark the PoI’s describing attribute as ∗.

4.3. Location-Dependent Gesture Selection Functions

A key concept in our framework is the LdG Gesture Selection Function (LdGSF), which
models and simulates the ways of thinking that users go through when they select a
gesture on a picture. The motivation behind this abstraction is that the set of PoIs and
their locations differ from picture to picture, but the ways that users think to choose
locations for drawing a gesture exhibit certain patterns. This conjecture is supported
by our observations from collected data and surveys discussed in Section 3. With the
help of LdGSF, the PoIs and corresponding passwords in training pictures are used to
generalize picture-independent knowledge that describes how users choose passwords.

Definition 2. An LdG Gesture Selection Function (LdGSF) is a mapping s : G× 2D ×
2D × � → 2� that takes a gesture, two sets of PoI attributes, and a set of PoIs in the
learning picture as input to produce a set of LdGs.

The universal set of LdGSF is defined as S. A length-three sequence of LdGSF is
denoted as �s, and a set of length-three LdGSF sequences is denoted as �S. We use
� to denote the universal set of image PoIs and θk to denote the PoIs of picture
pk. s(tap, {red, apple}, ∅, θk) is interpreted as “tap a red apple in the picture pk” and
s(circle, {head}, ∅, θk) as “circle a head in pk.” Note that no specific information of the
locations of “red apple” and “head: is provided here, which makes the representations
independent of actual locations of objects in the picture.

One challenge we face is that some PoIs may be big enough to take several unique
gestures. Let us consider a picture with a big car image in it. Simply saying “tap a
car” could result in lots of distinct tap gestures in the circumscribed rectangle of the
car. One solution to this problem is to divide the circumscribed rectangle into a grid
with the scale of toleration threshold. However, this solution would result in too many
password entries in the generated dictionary. For simplicity, we introduce five inner
points for one PoI; namely, center, top, bottom, left, and right that denote the center
of the PoI and four points of the center of two consecutive corners. Any gesture that
falls into the proximities of these five points of a PoI would be considered an action on
this PoI. For some PoIs that are big enough to take an inner line gesture, we put ∅

as the input of the second set of PoI attributes. s(line, {mouth}, ∅, θk) denotes “line from
the left(right) to the right(left) on the same mouth.” Whereas s(line, {mouth}, {mouth}, θk)
means “connect two different mouths.”

Figure 5 shows an example demonstrating how LdGSF simulates a user’s selection
processes that were taken from Pace [2011b]. In reality, a user’s selection process on
a PoI and gesture selection may be determined by some subjective knowledge and
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Fig. 5. (a) Background picture and password. (b) User’s selection processes that were taken from (c) corre-
sponding LdGSFs that simulate user’s selection processes.

Fig. 6. (a) Background picture and identified PoIs. (b) Identified PoIs. (c) Password representations (colors
are used to indicate the connections between the PoIs in (b) and LdGs in (c)).

cognition. For example, “circle my father’s head” and “tap my mother’s nose” may in-
volve some undecidable computing problems. One solution to handle this issue is to
approximate subjective selection processes in objective ways by including some modi-
fiers. “circle my father’s head” may be transformed into “circle the uppermost head” or
“circle the biggest head.” However, it is extremely difficult, if not impossible, to accu-
rately approximate subjective selection processes in this way, and it may bring serious
overfitting problems into the learning stage. Instead, we choose to ignore subjective
information by abstracting “circle my father’s head” to “circle a head.” A drawback
to this abstraction is that an LdGSF may return more than one LdG, and we have
no knowledge to rank them directly because they come from the same LdGSF. Using
Figure 5(a) as an example, “circle a head” outputs four different LdGs on each head in
the picture. The LdGSF sequence shown in Figure 5(c) generates 4 × (4 × 3) × 4 = 192
passwords. To cope with this issue, we use gesture-order to rank the passwords gen-
erated by the same LdGSF sequence, which will be detailed in Section 4.5. Next, we
present an automated approach to extract users’ selection processes from the collected
data and represent them with LdGSFs.

Definition 3. LdGSF identification is a process that can be denoted as a function
e : � × � → 2S, where ∀s ∈ e(θk, π ), π ∈ s(θk). The function takes the PoIs of a picture
and one LdG in its corresponding password as input and generates a set of LdGSFs
that could reproduce the same LdG on the picture.

Figure 6 shows an example demonstrating how to extract users’ selection processes
from PoIs automatically. First, PoIs in the background picture are identified using
mature computer vision techniques such as object detection, feature detection, and
objectness measure. Then, each LdG in a password is compared with PoIs based
on their coordinates and sizes. If a match between PoIs and LdGs is found, a new
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LdGSF is created as the combination of the LdG’s gesture type and the PoI’s at-
tributes. For instance, the location and size of LdG 1 in Figure 6(c) matches PoI 2
in Figure 6(b) (the locations of the circle gesture and PoI center are compared first;
then, the radius of the circle is compared with 1/2 of the PoI’s height and width).
Then, an LdGSF s(circle, {head}, ∅) is created that is equivalent to the LdG shown in
Figure 5(c).

To choose a password in PGA, the user selects a length-three LdGSF sequence. With
the definition of LdGSF, the generation of ranked password list is simplified into the
generation of the ranked LdGSF sequence list. Let order: �S → {1..| �S|} be a bijection
that indicates the order in which LdGSF sequences should be performed. The objective
of generating a ranked LdGSF sequence list is to find such a bijection.

4.4. LdGSF Sequence List Generation and Ordering

Now, we present our approach to finding the aforementioned bijection that indicates
the order in which the LdGSF sequences should be performed on a target picture to
generate the password dictionary. Our framework is not dependent on certain rules,
but is adaptive to the tendencies shown by users who participate in the training set.
The characteristic of adaptiveness helps our framework generate dedicated guessing
paths for different training data. Next, we present two algorithms for obtaining such a
feature.

4.4.1. BestCover LdGSF Sequence List Generation. We first propose an LdGSF sequence
list generation algorithm named BestCover that is derived from Bmssc [Feige et al.
2004] and Bemts [Zhang et al. 2010]. The objective of BestCover LdGSF sequence list
generation is to optimize the guessing order for the sequences in the list by minimizing
the expected number of sequences that need to be tested on a random choice of picture
in the training dataset.

The problem is formalized as follows: Instance: The collection of LdGSF sequences
�s1, . . . , �sn and corresponding picture password �π1, . . . , �πn, for which �si(θi) � �πi, i ∈ {1..n}
and θ1, . . . , θn are the sets of PoIs in pictures p1, .., pn. Question: Expected Min Selection
Search (emss): The objective is to find order so as to minimize E(min{i : �si(θr) � �πr},
where �si = order−1(i) and the expectation is taken with respect to a random choice
of r ← {1..n}. We use coveremss(k) = min�s:�s(θk)� �πk(orderemss(�s)) to compute the num-
ber of required guesses to break �πk. Therefore, E(min{i : �si(θr) � �πr} is equivalent
to E(coveremss(r)).

The hardness of this problem is that different LdGSFs and LdGSF sequences may
generate the same list of LdGs and passwords. For instance, “tap a red object” and
“tap an apple” produce the same result on a picture in which there is a red apple. An
overlap in different LdGSF results is similar to the coverage characteristics in the set
cover problem. We can prove the NP-hardness of emss by reducing from mssc [Feige
et al. 2004; Zhang et al. 2010]. Min Sum Set Cover (mssc) is formalized as follows:
Given a set U and a collection C of subsets of U where

⋃
C∈C = U , let ordermssc :

C → {1..|C|} be a bijection, and let covermssc : U → {1..|C|} be defined by covermssc( j) =
minC� j(ordermssc(C)). The problem is called min sum because the object is to minimize∑

j∈U covermssc( j).
Given any instance (U, C) of mssc, denote U = {1..n}. We create a set of PoIs θ j and

a picture password �π j for each j ∈ U . θ j and �π j must be different from θk and �πk,
respectively, for any k �= j. For each C ∈ C, we create an LdGSF sequence �sC such
that �sC(θ j) � �π j if j ∈ C and such that �sC(θ j) = φ if j �∈ C. We can always construct
such an LdGSF sequence for each C by combining all θ j, j ∈ C as a new PoI type
in a wildcard representation. The set �S consists of the set of �sC for different C. Set
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ordermssc(C) ←orderemss( �sC), then

E(coveremss(r))

=
n∑

i=1

i × Pr(coveremss(r) = i)

=
n∑

i=1

i × |k ∈ {1..n} : coveremss(k) = i|
n

The number of picture passwords that are
cracked for the first time at the ith guess di-
vided by the total number of picture passwords

=
n∑

i=1

i × | j ∈ U : covermssc( j) = i|
n

=
∑

j∈U

covermssc( j)
n

Therefore, orderemss minimizes E(coveremss(r)) if and only if ordermssc minimizes∑
j∈U covermssc( j). We give an approximation algorithm for emss in Algorithm 1 that

is a modification from Bmssc [Feige et al. 2004] and Bemts [Zhang et al. 2010]. The time
complexity of BestCover is O(n2 + | �S′|log(| �S′|)).

ALGORITHM 1: BestCover(( �s1, . . . , �sn),( �π1, . . . , �πn))

for i = 1..n do
T�si ← {k : �si(θk) � �πk};

end
�S′ ← {�s : |T�s| > 0};
for i = 1..| �S′| do

order−1(i)← �sk, that T �sk has most elements that are not included in
⋃

i′<iorder−1(i′);
end
return order

BestCover is good for a training dataset that consists of comprehensive and large-
scale password samples because it assumes that the target passwords exhibit the same
or at least very similar distributions as the training data. However, if the training
dataset is small and biased, the results from BestCover may overfit the training data
and fail in testing data.

4.4.2. Unbiased LdGSF Sequence List Generation. The overfitting problem in BestCover is
brought about by the biased PoI attribute distributions in training data. For example,
we have a training set with 9 pictures of apples and 1 picture of a car, and 5 correspond-
ing passwords have circles on apples, and 1 has a circle on car. In the generated LdGSF
sequence list, BestCover will put sequences with “circle an apple” prior to the ones with
“circle a car” because the former have an LdGSF that was used in more passwords.
However, we can see the probability for users to circle car (1/1) is higher than apples
(5/9) if we consider the occurrences of apple and car in the pictures.

Unbiased LdGSF sequence list generation copes with this issue by considering the PoI
attribute distributions. It removes the biases from the training dataset by normalizing
the occurrences of LdGSFs with the occurrences of their corresponding PoIs. Let D�sk ⊆ θ
denote the event that θ contains enough PoIs that have attributes specified in �sk. If a
PoI with a specific type of attributes does not exist in a picture, the probability that
a user selects the PoI with such an attribute on this picture to draw a password is 0,
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denoted as Pr( �sk|D�sk ⊆ θ ) = 0 (e.g., a user would not think and perform “tap a red apple”
on a picture without the existence of the red apple). We assume that each LdGSF in a
sequence is independent of each other and approximately compute Pr( �sk|D�sk ⊆ θ ) with
Equation 1:

Pr( �sk|D�sk ⊆ θ )
= Pr(s1s2s3|Ds1 ⊆ θ ∧ Ds2 ⊆ θ ∧ Ds3 ⊆ θ )
= Pr(s1|Ds1 ⊆ θ ) × Pr(s2|Ds2 ⊆ θ ) × Pr(s3|Ds3 ⊆ θ )

(1)

For each si ∈ S, we compute Pr(si|Dsi ⊆ θ ) with Equation:

Pr(si|Dsi ⊆ θ ) =
∑n

j=1 count(Dsi , �π j)∑n
j=1 count(Dsi , θ j)

, (2)

where
∑n

j=1 count(Dsi , �π j) denotes the number of LdGs in passwords of the training set
that share the same attributes with si, and

∑n
j=1 count(Dsi , θ j) denotes the number of

PoIs in the training set that share the same attributes with si. Pr(si|Dsi ⊆ θ ) describes
the probability of using a certain LdGSF when there are enough PoIs with the required
attributes.

The Unbiased algorithm generates an LdGSF sequence list by ranking Pr( �sk|D�sk ⊆ θ )
instead of Pr( �sk) in descending order, as shown in Algorithm 2. The time complexity
of Unbiased is O(n|S| + | �S|log(| �S|)). The Unbiased algorithm would be better for those
scenarios in which fewer samples are available or samples are highly biased.

ALGORITHM 2: Unbiased(S)

for s ∈ S do
Compute Pr(s|Ds ⊆ θ ) with Equation 2;

end
for �s ∈ �S do

Compute Pr(�s|D�s ⊆ θ ) with Equation 1;
end
for i = 1..| �S| do

order−1(i)← �sk, that Pr( �sk|D�sk ⊆ θ ) holds the i-th position in the descending ordered
Pr(�s|D�s ⊆ θ ) list;

end
return order

4.5. Password Dictionary Generation

The last step in our attack framework is to generate the password dictionary for a
previously unseen target picture. First, the PoIs in the previously unseen picture are
identified. Then, a dictionary is acquired by applying the LdGSF sequences on the
PoIs, following the order created by the BestCover or Unbiased algorithm. Obviously,
the passwords generated by an LdGSF sequence that holds a higher position in the
LdGSF sequence list will also be in higher positions in the dictionary. However, as
addressed earlier, BestCover and Unbiased algorithms do not provide extra information
to rank the passwords generated by the same LdGSF sequence. Inspired by using click-
order patterns as the heuristics for dictionary generation [Salehi-Abari et al. 2008], we
propose to rank such passwords generated by the same LdGSF sequence with gesture-
orders. In the training stage, we record the gesture-order occurrence of each LINE
and DIAG pattern and rank the patterns in descending order. In the attack stage, for
the passwords generated by the same LdGSF sequence, we reorder them with their
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gesture-orders in the order of LINE and DIAG patterns. Passwords that do not belong
to any LINE or DIAG pattern hold lower positions.

5. IMPLEMENTATION AND LDGSF IDENTIFICATION

We adopted several computer vision techniques to identify sophisticated and salient ob-
jects in the images. Some techniques were implemented in Matlab code, whereas some
were implemented under the OpenCV4 framework. The computer vision techniques we
adopted include:

Object detection: The goal of object detection is to find the locations and sizes of
semantic objects of a certain class in a digital image. We used the method described in
object detection with discriminatively trained part-based models [Felzenszwalb et al.
2010]. The latest version of its Matlab code release at the time of writing [Girshick
et al. 2010] includes trained models for 21 object classes that are commonly found
in the images of the PASCAL Visual Object Classes Challenge 2007 dataset. These
models are trained to detect airplane, bicycle, bird, boat, bottle, bus, car, cat, chair,
cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and
tv monitor objects. The actual detection is performed by calling function imgdetect
of the code release with parameters threshold=-0.6. To complement this effort, we
also used the Viola-Jones object detection framework [Viola and Jones 2004]. In the
Viola-Jones object detection framework, each learned classifier is represented as a
haar cascade. We collected 30 proven haar cascades5 for eight different object classes
including face (head), eye, nose, mouth, ear, forehead, body, and clock. The actual
detection is performed by calling OpenCV API cvHaarDetectObjects with parameters
scaleFactor=1.1 and minNeighbors=4.

Salient object detection and objectness measure: Since the PoIs in our attack
framework could be any local image regions that could be of interest to human users,
we also resort to visual saliency and salient object detection techniques, for which the
analyses and comparisons of models can be found in Borji et al. [2012] and Borji et al.
[2013]. We used the discriminative regional feature integration approach described
in Jiang et al. [2013] for its ease of use and outstanding performance recorded in
the aforementioned two analyses reports. For a complementary approach, we used
objectness measure [Alexe et al. 2012], which deals with class-generic object detection.
We used an objectness measure library6 that is able to locate objects and give numerical
confidence values with its results.

Low-level feature detection: Due to the high positive and high negative rates
of object detection, we also resorted to some low-level feature detection algorithms
that identify standout regions without extracting semantics. To identify regions whose
colors are different from their surroundings, we first converted the color pictures to
black and white, then found the contours using algorithms in Suzuki [1985]. For circle
detection, we used Canny edge detector [Canny 1986] and Hough transform algorithms
[Ballard 1981].

Figure 7 displays the PoI detection results on four example pictures in Dataset-
2. As we can see in Figure 7(b), circle detection could identify both bicycle wheels
and a car badge, but its false-positive rate is a little high. Contour detection is the
most robust algorithm with a low false-positive rate that could locate regions whose
colors are different, as shown in Figure 7(c). The objectness measure, shown in Fig-
ure 7(d), could also identify regions whose colors and textures are different from their

4http://opencv.willowgarage.com.
5http://alereimondo.no-ip.org/OpenCV/34.
6http://groups.inf.ed.ac.uk/calvin/objectness/.
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Fig. 7. PoI identification on example pictures in Dataset-2. (a) Original pictures. (b) Circle detection with
Hough transform. (c) Contour detection. (d) Objectness measure. (e) Object detection.

surroundings. Since most haar cascades we used are designed for facial landmarks, they
work smoothly on portraits, as shown in the second picture in Figure 7(e). However, the
results show relatively high false-positive rates on pictures from other categories. In
order to identify more PoIs as accurately as possible, our approach in PoI identification
leveraged two steps. In the first step, all possible PoIs were identified using different
kinds of tools. In the second step, we examined all identified PoIs and removed dupli-
cates by comparing their locations, sizes, and attributes. Then, our approach generated
a PoI set called P1

A-50 and P2
A-50 for each picture in Dataset-1 and Dataset-2, respectively.

Those PoI sets consisted of at most 50 PoIs with the highest confidences. Compared
with our previous work [Zhao et al. 2013], we identified nine more PoIs on average for
each image in Dataset-1 and four more PoIs on average for each image in Dataset-2.

Since our attack algorithms are independent of the PoI identification algorithms,
we are also interested in examining how our attack framework performs with ideal
PoI annotations for pictures. In addition to using the automated PoI identification
techniques, we manually annotated pictures in Dataset-2 for some outstanding PoIs as
well. To annotate the pictures, we simply recorded the locations and attributes of at
most 15 most appealing regions in the pictures without referring to any password in
the collected dataset. We call this annotated PoI set P2

L-15.
We discuss the identified LdGSFs by linking PoIs and passwords in Dataset-2 with

the help of two PoI sets P2
L-15 and P2

A-50 using our LdGSF identification algorithm
discussed in Section 4.3. The results from PL are closer to users’ actual selection pro-
cesses, whereas the results from PA are the best approximations to users’ selection
processes we could get in a purely automated way with state-of-the-art computer vision
techniques.

The top 10 identified LdGSFs using P2
L-15 are shown in Table VII, ordered by their

Pr(sk) and Pr(sk|Dsk ⊆ θ ). It also suggests that “tap a head” is found the most times
in the passwords, whereas “tap a nose” is the most popular one when there is a nose
in the picture. The result seems unreasonable at first glance since there is always a
nose in a head. Actually, if the head in the picture is really small, we simply annotate
the circumscribed rectangle as a head instead of marking the inner rectangles with
more specific attributes. Table VII indicates that gestures on human facial landmarks
are the most popular selection functions adopted by subjects.
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Table VII. Top 10 Identified LdGSFs Using P 2
L-15

Rank Pr(sk) Pr(sk|Dsk ⊆ θ )
1 (tap, {head}, ∅) (tap, {nose}, ∅)
2 (tap, {∗c}, ∅) (tap, {mouth}, ∅)
3 (tap, {circle}, ∅) (tap, {circle}, ∅)
4 (tap, {eye}, ∅) (tap, {eye}, ∅)
5 (circle, {head}, ∅) (tap, {∗c}, ∅)
6 (tap, {nose}, ∅) (tap, {head}, ∅)
7 (circle, {circle}, ∅) (circle, {circle}, ∅)
8 (circle, {eye}, ∅) (tap, {ear}, ∅)
9 (line, {∗c}, {∗c}) (line, {mouth}, {mouth})
10 (line, {eye}, {eye}) (tap, {forehead}, ∅)

Table VIII. Top 10 Identified LdGSFs Using P 2
A-50

Rank Pr(sk) Pr(sk|Dsk ⊆ θ )
1 (tap, {body}, ∅) (tap, {clock}, ∅)
2 (tap, {circle}, ∅) (circle, {clock}, ∅)
3 (tap, {mouth}, ∅) (tap, {shoulder}, ∅)
4 (tap, {eye}, ∅) (tap, {eye}, ∅)
5 (tap, {∗c}, ∅) (tap, {head}, ∅)
6 (tap, {head}, ∅) (tap, {car}, ∅)
7 (tap, {∗}, ∅) (tap, {mouth}, ∅)
8 (circle, {eye}, ∅) (tap, {circle}, ∅)
9 (line, {∗c}, body) (tap, {body}, ∅)

10 (tap, {clock}, ∅) (tap, {∗}, ∅)

The top 10 identified LdGSFs using P2
A-50 are shown in Table VIII. By comparing

Table VII and Table VIII, we notice differences caused by using an annotated PoI set
and an automated detected PoI set. The fact that s(tap, {∗}, ∅) is among the top 10
LdGSFs is an indicator that the automatic PoI identification could not classify many
PoIs and simply marked them as ∗. It is at first surprising to find that there are three
LdGs on clock in the top 10 ordered by Pr(sk|Dsk ⊆ θ ) because there is no clock in any
picture in Dataset-2. The closest guess is OpenCV, which falsely identified some circle-
shape objects as clocks.

6. NONTARGETED ATTACK EVALUATION

In this section, we present the evaluation results of our framework for nontargeted
attacks. To attack passwords from a previously unseen picture, the training dataset
excluded passwords from the target picture. More specifically, to evaluate Dataset-1
(58 unique pictures), we used passwords from 57 pictures as the training data and
attacked the passwords for the last picture. To evaluate Dataset-2 (15 unique pictures),
we used passwords for 14 pictures as training data, learned the patterns exhibited in
the training data, and generated a password dictionary for the last picture. The same
process was carried out 58 and 15 times for Dataset-1 and Dataset-2, respectively, in
which the target picture was different in each round. The size of the dictionary was set
as 219, which is 11 bits smaller than the theoretical password space. We compared all
collected passwords for the target picture with the generated dictionary for the picture
and recorded the number of password guesses.

Nontargeted attacks also require that the training dataset does not include previous
passwords from the targeted user. However, it turns out to be very time-consuming to
perform strict nontargeted attacks on our Dataset-2. Instead, in our analyses, training
password datasets include a very small number of passwords from the targeted subject.
More specifically, in our experiment, there were around 9,400 training passwords, of
which only 14 came from the targeted user. Even though this may affect the results,
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Fig. 8. Offline attacks with all available passwords. For Dataset-1, there are 86 passwords that include
258 LdGs. For Dataset-2, there are 10,039 passwords that have 30,117 LdGs. (a) Percentage of passwords
cracked vs. number of password guesses, per condition. (b) Percentage of LdGs cracked vs. number of
password guesses, per condition.

we believe it is less influential. Since all training passwords were treated equally, the
influence brought by the 0.14% training data is low.

6.1. Offline Attacks

Picture passwords may be hashable using discretization methods [Jean-Camille Birget
and Memon 2006]. Even though the approach that Windows 8TM is adopting to store
picture passwords remains undisclosed, we could consider two attack scenarios in
which picture passwords are prone to offline attacks. In the first scenario, all passwords
that fall into the vicinity (defined by the threshold) of chosen passwords could be stored
in a file with salted hashes for comparison. An attacker who has access to this file could
perform offline dictionary attacks, such as cracking text-based password systems. In the
second scenario, picture passwords could be used for other purposes besides logging into
Windows 8TM, where no constraint on the number of attempts is enforced. For example,
a registered picture password could be transformed and used as a key to encrypt a file.
An attacker who acquires the encrypted file would likely perform an offline attack.

The offline attack results within 219 guesses in different settings are shown in
Figure 8. There are 86 passwords in Dataset-1, which have a total of 258 LdGs. And
10,039 passwords were collected in Dataset-2, containing a total of 30,117 LdGs. For
Dataset-1, BestCover cracks 42 (48.8%) passwords out of 86, whereas Unbiased cracks
41 (47.7%) passwords for the same dataset with P1

A-50. For Dataset-1, 179 LdGs (69.3%)
out of 258 are cracked with Unbiased, and 173 (67.0%) are broken with BestCover. On
the other hand, Unbiased with P2

L-15 breaks 2,953 passwords (29.4%) out of 10,039 for
Dataset-2. This implies that BestCover with P2

A-50 cracking 2,434 passwords (24.2%) is
the best result for all purely automated attacks on Dataset-2. As Figure 8 suggests,
BestCover outperforms Unbiased slightly when ample training data are available. The
better performance of both algorithms on Dataset-1 is because the password gesture
combinations in Dataset-1 are relatively simpler than those in Dataset-2, as we dis-
cussed in Section 3.2.

In Dataset-2, subjects may not have chosen all 15 passwords with the same care
because they were eager to finish the process. To reduce this effect, we ran another
analysis in which only the first password chosen by each subject was considered. There
are 762 passwords that have 2,286 LdGs. Like the previous analysis, the training
dataset excluded passwords from the target picture. As shown in Figure 9, results
of this analysis are not as good as previous ones. Unbiased with P2

L-15 breaks 160
passwords (21.0%) out of 762. Unbiased with P2

A-50 cracked 118 passwords (15.5%).
BestCover cracks 108 (14.2%) and 116 (15.2%) with P2

L-15 and P2
A-50, respectively.
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Fig. 9. Offline attacks with only the first chosen password by each subject in Dataset-2. There are 762
passwords that have 2,286 LdGs. (a) Percentage of passwords cracked vs. number of password guesses, per
condition. (b) Percentage of LdGs cracked vs. number of password guesses, per condition.

Fig. 10. Offline attacks with only passwords for pictures 243, 1116, 2057, 4054, 6467, and 9899. There
are 4,003 passwords that have 12,009 LdGs. (a) Percentage of passwords cracked vs. number of password
guesses, per condition. (b) Percentage of LdGs cracked vs. number of password guesses, per condition.

Since some pictures in Dataset-2 are similar, we ran an additional analysis in which
only passwords for pictures 243 (airplane), 1116 (portrait), 2057 (car), 4054 (wedding),
6467 (bicycle), and 9899 (dog) were considered. There are 4,003 passwords that have
12,009 LdGs. Unbiased with P2

L-15 breaks 1,147 passwords (28.6%), whereas 703 pass-
words (17.6%) are cracked by Unbiased with P2

A-50. BestCover cracks 829 (20.7%) and
863 (21.6%) with P2

L-15 and P2
A-50 respectively. Results of this analysis are not as good

as results with passwords from all pictures.

6.2. Effects of Training Data Size

In Figure 11, we show the password and LdG cracking results with different sizes
of training datasets. For each algorithm, we used P2

A-50 as the PoI set and performed
three analyses with 60,600, and all available passwords (about 9,400) as training data,
respectively. The sizes of 60 and 600 represent two cases: (i) a training set (60) is ten
times smaller than the target set (about 669), and (ii) a training set (600) is almost
the same size as the target set (about 669). For training datasets with the sizes of 60
and 600, we randomly selected these training passwords and performed each analysis
three times to get the averages and standard deviations. As in the experiments using all
available training data, the training passwords in these experiments are from different
pictures than the target passwords. Therefore, there is no overlap between the training
passwords and the target passwords.

As Figure 11 shows, BestCover with 60 training samples could only break an average
of 803 passwords (8.0%) out of 10,039; the standard deviation is as strong as 669.
While Unbiased with 60 training samples can crack 2,242 passwords (22.3%), which
is almost the same as the results generated from all available training samples. Also,
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Fig. 11. Effects of training data size. (a) Average number of passwords cracked vs. different training data
sizes. (b) Average number of LdGs cracked vs. different training data sizes. P2

A-50 is used for this analysis.
Average over three analyses, with one standard deviation shown.

the standard deviation for three trials is as low as 125. The results from BestCover
with 600 training samples are much better than its counterparts with 60 training
samples. All these observations are expected because Unbiased could eliminate the
biases considered in BestCover. The results clearly demonstrate the benefit of using
the Unbiased algorithm when a training dataset is small.

6.3. Effects on Different Picture Categories

We measured the attack results on different picture categories, as shown in Figure 12,
where each subfigure depicts the number of passwords cracked versus the number of
password guesses. Each curve in a subfigure corresponds to a picture, as shown in
the legend. Our approach cracks more passwords for a picture if the curve is skewed
upward. And the cracking is faster (with fewer guesses) if the curve is leaned toward
the left.

Figure 12(a) provides a view of the attack results on target pictures 243 and 316, each
of which has only one airplane flying in the sky. Fewer PoIs in these two pictures make
subjects choose more similar passwords. Unbiased with P2

A-50 breaks 261 passwords
(39.0%) for picture 243 and 199 for picture 316. The cracking success rates are much
higher than the average success rate in Dataset-2 under the same condition. Note that
the sizes of generated dictionaries for these two pictures are smaller than 219 due to
the number of available PoIs.

In Figure 12(b), we show the results on two portrait pictures where Unbiased with
P2

A-50 cracks 388 passwords (29.0%) for both in total. The attack success rate is much
higher than the average success rate in Dataset-2. This is due to the fact that state-
of-the-art computer vision algorithms work well on facial landmarks, and subjects’
tendencies to draw on these features are high. The results show that passwords on
simple pictures with fewer PoIs or portraits, for which state-of-the-art computer vision
techniques could detect PoIs with high accuracy, are easier for attackers to break.

Figure 12(c) shows the attack results on five pictures of people. Some of these pictures
only have very small figures of people, and others have larger figures but not big enough
to be considered portraits. Unbiased with P2

A-50 cracks 677 passwords (20.2%) for these
five pictures in total, which is lower than the average success rate in Dataset-2.

Figure 12(d) shows the attack results on four miscellaneous pictures, two of which
are bicycle pictures and the other two car pictures. The picture, 6412.jpg, has a bicycle
leaning against the wall. Different colors on the bicycle and wall in this picture make
it cluttered and produce lots of PoIs. Unbiased with P2

A-50 cracked 451 (17.0%) for all
four pictures.
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Fig. 12. Effects on different picture categories. (a) Pictures with fewer PoIs. (b) Portraits. (c) Pictures with
people in them. (d) Pictures with lots of PoIs. Unbiased algorithm on P2

A-50 is used for this analysis. (Please
refer to Figure 2 for the pictures.)

Fig. 13. Online attacks with all available passwords. There are 10,039 passwords that have 30,117 LdGs in
Dataset-2. (a) Number of passwords cracked within five guesses, per condition. (b) Number of LdGs cracked
within five guesses, per condition.

6.4. Online Attacks

The current Windows 8TM allows five failure attempts before it forces users to enter
their text-based passwords. Therefore, breaking a password in under five guesses im-
plies the feasibility for launching an online attack. Figure 13 shows a refined view of
the number of passwords and LdGs cracked with the first five guesses per condition.
Purely automated attack Unbiased with P2

A-50 breaks 83 passwords (0.8%) with the first
guess and cracks 94 passwords (0.9%) within the first five guesses, whereas BestCover
with P2

A-50 cracked 20 passwords (0.2%) with the first guess and 38 passwords (0.4%)
within five guesses. Additionally, Unbiased with P2

A-50 breaks 1,723 LdGs (5.7%) with
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Fig. 14. Average runtime in seconds to order LdGSF sequences using BestCover and Unbiased. Average
over 15 pictures in Dataset-2 with one standard deviation shown.

the first guess. With the help of manually labeled PoI set P2
L-15, the results are even

better. For example, Unbiased breaks 195 passwords (1.9%) with the first guess and
266 (2.6%) within the first five guesses. In the meantime, Unbiased with P2

L-15 breaks
3,022 LdGs (10.0%) with the first guess and 4,090 LdGs (13.5%) with five guesses.

6.5. Performance

Our analyses were carried out on a computer with a dual-core processor and 4GB of
RAM. In Figure 14, we show the average runtime for our algorithms to order the LdGSF
sequences and generate a dictionary for a picture in Dataset-2. Each bar represents the
average time in seconds over 15 pictures with the standard deviation using different
algorithms and PoI sets. The results show that BestCover is much faster than Unbiased
under the same condition. The average runtime for BestCover on P2

A-50 to order LdGSF
sequences is only 0.06 seconds and to generate a dictionary is 2.68 seconds, whereas
Unbiased spends 18.36 and 3.96 seconds, respectively. As we analyzed in Section 4.4,
such a difference is caused by the complexity of each algorithm. With such a prompt
response, BestCover could be used for online queries.

7. TARGETED ATTACK EVALUATION

In this section, we present the evaluation results of our framework for targeted attacks.
In targeted attacks, an attacker has possession of some picture and password pairs
collected from the target user. Hence, the guessing path is more specific to the targeted
user. This attack model is realistic when the user is using different passwords and
background images on multiple devices. The attacker may have acquired some of the
user’s passwords by shoulder-surfing or using a password logger and wants to accelerate
the guessing of the user’s passwords for other devices by taking acquired passwords
into account.

Because most subjects in Dataset-1 only chose one password, Dataset-1 was excluded
from these experiments. We only use the passwords of those subjects who chose two or
more passwords in Dataset-2 in these experiments. There are 697 subjects who fall into
this pattern, resulting in 9,974 passwords. For each of the 697 subjects, we use one of her
passwords as the target and the rest of her passwords as a training dataset to build the
model. The average size of training datasets is around 13, which is significantly smaller
than the size used (around 9,400) in nontargeted attacks. A dictionary is generated in
this way for each target password per user. Since each subject only chose one password
for each picture, a training dataset does not include passwords for the target picture.
We recorded the number of password guesses when a password is cracked. Then, we
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Fig. 15. Offline attacks. There are 9,974 passwords from 697 accounts in this experiment. The average size
of training datasets is around 13. (a) Percentage of passwords cracked vs. number of password guesses, per
condition. (b) Passwords cracked per account. Each horizontal bar represents a condition. Regions within
each bar show the fraction of accounts for which the indicated number of passwords were cracked.

cumulated the results for each user and each target password together in a single
figure, as illustrated in Figure 15.

The offline attack results within 219 guesses in different settings are shown in
Figure 15(a). Unbiased with P2

L-15 breaks 2,233 passwords (22.4%) out of 9,974. Unbi-
ased with P2

A-50 breaks 2,083 passwords (20.9%) out of 9,974. Even though the results
are a little bit lower than nontargeted attacks, we should take the significantly smaller
training dataset sizes into account. In a nontargeted attack, the training data size is
around 9,400 passwords. However, in a targeted attack, the training data sizes range
from at least 1 password to at most 14 passwords with an average of 13. In other words,
targeted attacks using Unbiased algorithms with an around 100 times smaller training
data set could achieve almost the same results as nontargeted attacks. BestCover with
P2

L-15 and P2
A-50 breaks 1,096 (10.9%) and 1,057 (10.6%) passwords, respectively. Due

to the small training data size, the results from BestCover for nontargeted attacks are
quite lower than its counterparts for targeted attacks.

For online attacks within five guesses (shown in the left-lower corner of Figure 15(a)),
Unbiased with P2

L-15 breaks 434 passwords (4.4%) out of 9,974, and the first guesses
could even break 380 (3.8%) passwords. Unbiased with P2

A-50 breaks 77 passwords
(0.7%) out of 9,974. BestCover with P2

L-15 breaks 351 passwords (3.5%), and BestCover
with P2

A-50 breaks 70 passwords (0.7%).
Figure 15(b) shows the fractions of the accounts for which the indicated number

of passwords were cracked. Each bar represents one condition. Unbiased with P2
A-50

cracks at least one password for 60.5% of accounts, whereas Unbiased with P2
L-15 could

crack 65.0%. Even though BestCover with P2
L-15 cracks more passwords in total than

BestCover with P2
L-15, BestCover with P2

L-15 breaks more accounts at least once. Both Un-
biased and BestCover with P2

L-15 crack all 15 passwords in 4 (5.7%) out of 697 accounts.

8. COMPARATIVE EVALUATION OF PGA USING UDSP FRAMEWORK

Bonneau et al. proposed a framework for comparative evaluation of web authentication
schemes in Bonneau et al. [2012b]. Their evaluation framework considers scheme
benefits from three different categories: usability, deployability, and security. We refer
to this as the UDS framework for short. Since the UDS framework is designed for web
authentication schemes, it does not capture some scheme benefits achieved by new
devices. And it does not include comprehensive privacy benefits either. In this section,
we extend the UDS framework by introducing three new usability benefits, one new
security benefits, and five new privacy benefits. These newly introduced benefits are
numbered after the original benefits in the UDS framework, so please refer to Bonneau
et al. [2012b] for detailed explanations of the original benefits. We call the extended
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Table IX. Comparative Evaluation of Schemes in Terms of Usability Benefits
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Text-based Passwords • • • © •
PCCP • • © © • • •

Fingerprint • • • © • © •
RSA SecurID • © © •

Draw Pattern* • • • © • • •
4-digit PINs* • • • • • •

PGA* • • • © • • • •
*Represents new benefits in UDSP framework or schemes that were not evaluated earlier.

framework a UDSP framework. As in Bonneau et al. [2012b], if a scheme partially
provides a benefit, we use the Quasi- prefix to indicate that.

Even though some newly introduced benefits might have some correlations with
the original benefits, they describe some features that cannot be covered by the UDS
framework. Similar to the UDS framework, in which some benefits are subjective (e.g.,
Efficient-to-Use and Infrequent-Errors), some benefits we introduce here are subjective
and related to users’ individual choices. For instance, we introduce a usability benefit
named Enjoyable-to-Use for which we conduct an informal survey to get opinions on
different schemes. A second example is a privacy benefit named Resilient-to-Birthday-
Disclosure that describes the possibility that the disclosure of users’ credentials leads
to the disclosure of their birthdays. Technically, a user could use any meaningless
4-digit number as a PIN. However, it is statistically significant that users’ PINs are
related to their birthdays [Bonneau et al. 2012d]. So, we do not grant PINs this benefit.
Some people may argue that statistical significance has nothing to do with a scheme
itself. We do not agree with this argument, and we believe it is the scheme designers’
responsibility to flatten the credentials’ probability distributions. This is also one of the
five password system design principles discussed in Yan et al. [2012]. Some existing
schemes have adopted this practice, such as those presented in Schechter et al. [2010]
and Chiasson et al. [2012]. Thorpe et al. [2014] also demonstrated that the distribution
of user-chosen passwords for PassPoints can be manipulated by merely changing how
the background image is presented.

8.1. UDSP Framework

We explain each of the new benefits we consider by giving it a name, an actual definition,
and its evaluation on four schemes. These four schemes are text-based passwords,
Persuasive Cued Click-Points (PCCP) [Chiasson et al. 2012], Fingerprint, and RSA
SecurID. The descriptions of these schemes and detailed evaluations of them on the
original UDS framework can be found in Bonneau et al. [2012a] and Bonneau et al.
[2012b]. Tables IX through XII list seven schemes, four of which were evaluated in
Bonneau et al. [2012a]; the other three are new, and their evaluation is in terms of
each benefit in the UDSP framework. The detailed explanations of the evaluation of
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Table X. Comparative Evaluation of Schemes in Terms of Deployability Benefits
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*Represents new benefits in UDSP framework or schemes that were
not evaluated earlier.

Table XI. Comparative Evaluation of Schemes in Terms of Security Benefits
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*Represents new benefits in UDSP framework or schemes that were not evaluated earlier.
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Table XII. Comparative Evaluation of Schemes in Terms of Privacy Benefits

Privacy benefits
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PGA* • •
*Represents new benefits in UDSP framework or schemes
that were not evaluated earlier.

those three new schemes—namely, Draw Pattern, PIN, and PGA—in these tables will
be discussed in Sections 8.2 and 8.3.

U9. Assistance-to-Recall: Users of the scheme receive implicit or explicit assistance
to recall their passwords or credentials at the time of authentication. A scheme
is granted Assistance-to-Recall if it is Memorywise-Effortless or it provides visual,
acoustical, or any other built-in-scheme means to help users recall their credentials.
Note that Assistance-to-Recall is different from Quasi-Memorywise-Effortless in UDS,
which requires users only to remember one secret for everything.

Text-based passwords are not Assistance-to-Recall. Even though text-based pass-
word system are often accompanied by password reminders, such reminders are not
an inherent part of the authentication scheme. PCCP is Assistance-to-Recall because
it leverages the human ability to remember images to help users recall their pass-
words. We consider Fingerprint as Assistance-to-Recall because it is Memorywise-
Effortless. RSA SecurID is not Assistance-to-Recall. Even though the users of RSA
SecurID can read dynamic 6-digit code from hardware tokens, they still need to
memorize and recall their 4-digit PINs without help.

U10. Touchscreen-Friendly: Using the scheme on touch-screen devices is at least
as easy as inputting text-based password with keyboards. A scheme is not granted
Touchscreen-Friendly if its credential input process requires special devices other
than touch-screens.

Text-based passwords are not Touchscreen-Friendly since users find typing al-
phanumerics and symbols on touch-screens very difficult. PCCP is Touchscreen-
Friendly because it only requires users to click points on pictures that could occupy
the whole touch-screen. Fingerprint is not Touchscreen-Friendly because it requires a
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fingerprint scanner. We grant RSA SecurID Touchscreen-Friendly status since typing
only numerical digits is not difficult on touch-screens with virtual numpads.

U11. Enjoyable-to-Use: Users of the scheme authenticate themselves to verifiers in
a fluid manner. In the meantime, the user experience of credential input process is
enjoyable, which means users consider the scheme fun or exciting to use.

The metric of Enjoyable-to-Use is relatively subjective. A user’s perception of a
scheme may change over time, location, and other factors. For example, a user who is
always curious about the new things may enjoy an authentication scheme at first and
get bored after using the scheme for a while. Even though it is difficult to accurately
model a scheme’s enjoyableness, it is necessary to consider this feature as a usability
property. To measure this subjective feature, we conducted an informal pilot study
to ask our participants’ opinions on this property. Our finding on this property is
preliminary and only tries to capture users’ coarse feelings. Further analysis on
this property remains for future work. Twelve graduate and undergraduate students
participated in this survey. Each participant was asked to give a binary answer.
If a scheme received six positive votes for Enjoyable-to-Use, we grant Enjoyable-to-
Use to the scheme. Based on this survey, none of the text-based passwords, PCCP,
Fingerprint, and RSA SecurID is granted Enjoyable-to-Use.

S12. Resilient-to-Human-Choices-Guided-Guessing: Users of the scheme do not need
to choose secrets as or as part of their credentials. It is statistically proved that
human-chosen secrets follow a skewed probability distribution [Bonneau 2012a; Bon-
neau et al. 2012c]. Many methods have been proposed to use these patterns to guess
human-chosen secrets [Thorpe and Van Oorschot 2007; Bonneau 2012b; Uellenbeck
et al. 2013]. If human-chosen secrets are only used as part of the credentials in a
scheme, or if a scheme has mechanisms to flatten user-chosen patterns, we grant this
scheme Quasi-Resilient-to-Human-Choices-Guided-Guessing.

Text-based passwords are not granted this benefit. Even if complicated password
composition policies are used in real-world websites, new password composition
patterns are continuously discovered [Rao et al. 2013]. PCCP and RSA SecurID
are granted Quasi-Resilient-to-Human-Choices-Guided-Guessing because PCCP re-
quires users to click in a randomly selected portion of each image, which flattens the
password distribution, and RSA SecurID has a 6-digit dynamic passcode that is not
chosen by humans. We consider Fingerprint to have this benefit.

P1. Resilient-to-Identity-Disclosure: Leak of the credentials of the scheme does not
disclose the identities of the credentials’ owners. In some cases, the credentials have
two parts; namely, identifier (username) and secret (password), such as those in web
authentication schemes. In other cases, the identifier part is omitted. An authenti-
cation scheme of a mobile operating system that supports only a single user does not
need a username. Example schemes include Draw Pattern on Android and PIN on
iOS. A scheme is granted this benefit if and only if the disclosure of any part of the
credential cannot reveal the identity of the user. A scheme is given Quasi-Resilient-
to-Identity-Disclosure if the disclosure of the secret part would not give away the
user’s identity.

Text-based passwords and RSA SecurID are granted Quasi-Resilient-to-Identity-
Disclosure since user-chosen usernames could easily reveal users’ identities. PCCP
is granted this benefit because it does not require an overt username. Fingerprint
is not granted this benefit since the disclosure of a fingerprint, which is important
identifiable information, may lead to identity theft.

P2. Resilient-to-Image-Disclosure: Leak of the credentials of the scheme does not
disclose the images of the credentials’ owners.
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Text-based passwords, RSA SecurID, and Fingerprint are granted this benefit since
no image is involved in these schemes. PCCP is also granted this benefit because it
only uses preselected images.

P3. Resilient-to-Interests-Disclosure: Leak of the credentials of the scheme does not
disclose users interests.

Text-based passwords are not granted this benefit because previous research effort
discovered that password compositions are related to users’ interests [Castelluccia
et al. 2012]. Disclosure of a password may reveal the interests of the corresponding
username. PCCP is not granted this benefit because users may be more likely to click
objects that draw their interest to a PCCP image. RSA SecurID and Fingerprint are
granted this benefit.

P4. Resilient-to-Birthday-Disclosure: Leak of the credentials of the scheme does not
disclose users’ birthdays.

Fingerprint and PCCP are granted this benefit. RSA SecurID is not because it is
statistically significant that users’ PINs are related to their birthdays [Bonneau et
al. 2012d], and RSA SecurID uses a 4-digit PIN as part of the secret. Text-based
passwords are granted this benefit.

P5. Resilient-to-Physiological-Data-Disclosure: Leak of the credentials of the scheme
does not disclose users’ physiological information.

Fingerprint authentication may disclose users’ fingerprint information. As an ex-
ample, the iPhone 5s introduced fingerprint authentication, which triggered discus-
sions about privacy issues in addition to identity theft. Some are worried that Apple
may collect every iPhone 5s user’s fingerprint, and losing an iPhone 5s may bring the
disclosure of one’s fingerprint information. Text-based passwords, PCCP, and RSA
SecurID are granted this benefits.

8.2. Evaluation of Draw Pattern and PINs

Draw Pattern and PINs are two commercially popular authentication schemes that
are used in Android and iOS, respectively. In this section, we evaluate both within the
UDSP framework.

8.2.1. Draw Pattern. Please refer to Uellenbeck et al. [2013], if the reader is not fa-
miliar with Android Draw Pattern. Draw Pattern is neither Memorywise-Effortless
nor Scalable-for-Users. It is Nothing-to-Carry, but not Physically-Effortless. However,
it offers advantages over text-based passwords because users can use one hand and
one finger to unlock the devices. It is Easy-to-Learn and Efficient-to-Use. It is Quasi-
Infrequent-Errors due to inconsistent finger movements. It is Easy-Recovery-from-Loss
and Touchscreen-Friendly. It is not Assistance-to-Recall. It is Enjoyable-to-Use based
on our survey.

Draw Pattern is not Accessible for blind users and has Negligible-Cost-per-User. It is
Server-Compatible because each dot could be mapped to an alphanumeric, after which
a draw pattern could be stored and compared as a text-based password. It is also
Browser-Compatible. It is Mature and used in hundreds of millions of Android devices.
It is not Non-Proprietary.

Draw Pattern is not Resilient-to-Physical-Observation since either shoulder surf-
ing or smudge attack can reveal the secret. It is Resilient-to-Targeted-Impersonation
since knowing the user’s personal details does not help attack the password. It is
neither Resilient-to-Throttled-Guessing nor Resilient-to-Unthrottled-Guessing due to
a small password space and the strong patterns shown in a collected password set
[Uellenbeck et al. 2013]. It is neither Resilient-to-Internal-Observation nor Resilient-
to-Leaks-from-Other-Verifiers due to password reuse across sites and devices. It is
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not Resilient-to-Phishing but is Resilient-to-Theft since no physical token is used. It
has No-Trusted-Third-Party and Requiring-Explicit-Consent. It is Unlinkable. It is
not Resilient-to-Human-Choices-Guided-Guessing since feasible attacks have been pre-
sented [Uellenbeck et al. 2013].

This scheme is Quasi-Resilient-to-Identity-Disclosure if a username is required. In
some contexts of use, such as in Android, Draw Pattern does not need a username;
hence it is Resilient-to-Identity-Disclosure. It is both Resilient-to-Image-Disclosure
and Resilient-to-Interests-Disclosure. It is both Resilient-to-Birthday-Disclosure and
Resilient-to-Physiological-Data-Disclosure as well.

8.2.2. Personal Identification Numbers. Four-digit PINs are widely used in ATMs and
Apple iPhones. An empirical analysis of customer-chosen banking PINs was presented
in Bonneau et al. [2012c]. PINs are neither Memorywise-Effortless nor Scalable-for-
Users. However, they are easier to remember and recall than text-based passwords due
to their short representations. They are Nothing-to-Carry but not Physically-Effortless.
They are Easy-to-Learn and Efficient-to-Use. They are Infrequent-Errors and Easy-
Recovery-from-Loss. They are also Touchscreen-Friendly because normally a numpad
is displayed to assist user input. They are not Assistance-to-Recall. They are not granted
Enjoyable-to-Use based on our survey.

PINs are a simplified version of text-based passwords. Therefore, PINs provide the
same deployabilities as text-based passwords.

PINs are not Resilient-to-Physical-Observation because shoulder surfing and video
recording are typical ways to steal PINs. They are not Resilient-to-Targeted-
Impersonation since a considerable portion of users use their birthdays as their PINs.
They are neither Resilient-to-Throttled-Guessing nor Resilient-to-Unthrottled-Guessing
due to a small password space and strong patterns [Bonneau et al. 2012c]. They are nei-
ther Resilient-to-Internal-Observation nor Resilient-to-Leaks-from-Other-Verifiers due
to PIN reuse. They are not Resilient-to-Phishing but Resilient-to-Theft. They do not use
No-Trusted-Third-Party, and they are Requiring-Explicit-Consent. They are Unlink-
able. PINs are not Resilient-to-Human-Choices-Guided-Guessing.

PINs are Quasi-Resilient-to-Identity-Disclosure if usernames are provided. In some
contexts of use, such as in iPhone where usernames are not used, PINs are Resilient-
to-Identity-Disclosure. They are Resilient-to-Image-Disclosure, Resilient-to-Interests-
Disclosure, and Resilient-to-Physiological-Data-Disclosure. They are not Resilient-to-
Birthday-Disclosure.

8.3. Evaluation of PGA

We presented an empirical analysis of human-chosen PGA passwords in Section 3 and
of nontargeted and targeted attack results on collected passwords in Section 6 and
Section 7, respectively. The results from both empirical analysis and attacks serve as
the basis for us to evaluate if PGA provides certain criterion.

PGA is not Memorywise-Effortless since the size, location, and ordering of each draw-
ing must be remembered. It is not Scalable-for-Users because a password has to be
chosen for each site per user. However, it is easier to recall than text-based passwords
due to the human ability to remember images. We capture this characteristic by giving
it Assistance-to-Recall. It is obviously Nothing-to-Carry. It is not Physically-Effortless
because users need to draw gestures on screens. However, it offers advantages over
text-based passwords because, in most cases, users could use one hand and one fin-
ger to unlock the device quickly. It is Touchscreen-Friendly because drawing gestures
on touch-screens is much easier than typing alphanumerics. It is Easy-to-Learn and
Efficient-to-Use according to our user studies. It is Quasi-Infrequent-Errors and Easy-
Recovery-from-Loss. It is Enjoyable-to-Use based on our survey.
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PGA is not Accessible for blind users. It has Negligible-Cost-per-User because no
costly physical token is involved. It is not Server-Compatible with text-based passwords
because the format and comparison of passwords are not the same as those of text-based
passwords. It is Browser-Compatible because developers could capture drawings using
JavaScript. It is Mature and used in hundreds of millions of Windows devices. It is not
Non-Proprietary because a patent [Johnson et al. 2012] was issued to MicrosoftTM.

PGA is not Resilient-to-Physical-Observation. In fact, shoulder-surfing PGAs on a
large screen would be a serious problem [Honan 2012]. It is at best Quasi-Resilient-
to-Targeted-Impersonation since knowing the user’s personal habits and inclinations
could help in guessing her drawings. It is at best Quasi-Resilient-to-Throttled-Guessing
and not Resilient-to-Unthrottled-Guessing based on our attack results in Section 6. It
is neither Resilient-to-Internal-Observation nor Resilient-to-Leaks-from-Other-Verifiers
due to password reuse across sites and devices. It is Resilient-to-Phishing because
users choose their own images as background. It is Resilient-to-Theft since no physical
token is used. It has No-Trusted-Third-Party and Requiring-Explicit-Consent. It is not
Unlinkable because a user may use identical but personal images on different sites
and devices. It is not Resilient-to-Human-Choices-Guided-Guessing, as we discussed in
Sections 3 and 6.

PGA is not Resilient-to-Identity-Disclosure since the background image discloses the
identity of the user. It is neither Resilient-to-Image-Disclosure nor Resilient-to-Interests-
Disclosure, which we discuss in Section 3. It is both Resilient-to-Birthday-Disclosure
and Resilient-to-Physiological-Data-Disclosure.

In summary, PGA provides very good usability, especially on touch-screen devices. As
shown in Table IX, PGA offers more usability benefits than all other discussed schemes.
In particular, it is one of only two schemes classified as Enjoyable-to-Use and one of only
three schemes that offer Assistance-to-Recall. The good user experience provided by
PGA might be a major reason for it to be included in a commercially popular operating
system. For deployability, only PGA offers more benefits than Fingerprint and RSA
SecurID, both of which require the addition of some physical devices on either the
authenticator or authenticatee side. The proprietary protection for PGA may prevent
it from being deployed on more devices or websites. On the security side, the size of
the password space is very important. As listed in Table I, PGA offers larger password
space than the other two popular touch-screen-friendly schemes. However, its space
size with current settings is smaller than that for text-based passwords generated
with strict composition rules. When it comes to the number of security benefits in
UDSP, PGA offers the same number of security benefits as Draw Pattern, PINs, and
text-based passwords, all of which are considered not very secure. Even though the
security of a scheme cannot be accurately measured by the number of security benefits
it offers, this number can tell us how many attack methods a scheme could be resilient
to. Obviously, the security of PGA cannot compete with some more secure schemes,
such as RSA SecurID. From the perspective of privacy, PGA offers the least number
of privacy benefits in all discussed schemes, as shown in Table XII. The introduction
of users’ own pictures makes PGA enjoyable to use at the expense of exposing their
images. Therefore, users may hesitate using PGA-like schemes on devices that do not
belong to them. The good usability of PGA comes with a price not only on its security
features, but also on its privacy protection.

9. DISCUSSION

9.1. Other Attacks on PGA

In addition to keyloggers that record users’ finger movements, other attack methods
may affect the security of PGA and other BDAS schemes. Shoulder-surfing, in which
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attackers simply observe the user’s finger movements, is one of them. In our survey,
54.3% participants believe the picture password scheme is easier for attackers to ob-
serve when they are providing their credentials than are text-based password. Several
new shoulder-surfing-resistant schemes [Forget et al. 2010; Zakaria et al. 2011] were
proposed recently. However, usability is always a major concern for these approaches.
The smudge attack [Aviv et al. 2010], which recovers passwords from the oily residues
on a touch-screen, has also been proved feasible to BDAS schemes and could pose
threats to PGA.

9.2. Limitations of Our Study

Although we took great efforts to maintain our studies’ validity, some design aspects
of our studies and developed system may have caused subjects to behave differently
from what they normaly do on Windows 8TM PGA. As previously mentioned, subjects
in Dataset-1 used their passwords for access more than four times a week on average.
However, the data protected by the passwords in the website was not sensitive. In this
case, subjects preferred passwords with simpler gesture-type combinations that were
easier to reproduce quickly. There is a lack of recall session for Dataset-2, since subjects
pretended to access their bank information but did not have anything at risk. There is
a lack of recall session for Dataset-2 since subjects chose passwords relatively quickly
and never came back to use the chosen passwords. Schechter et al. [2007] suggest that
role playing like this affects subjects’ security behavior, so passwords in Dataset-2 may
not be representative of real passwords chosen by real users. In addition, we did not
record whether a subject used a tablet with touch-screen or a desktop with mouse. The
different input methods may affect the composition of passwords. Moreover, Dataset-2
includes multiple passwords per user, and this may have impacted the results.

10. RELATED WORK

Biddle et al. provided an excellent survey on the first 12 years of the history of graph-
ical passwords in Biddle et al. [2011]. Most graphical password schemes proposed in
academia and those used in real-world products from 1999 to 2010 have been cov-
ered in that paper. In all existing schemes, PGA is most similar to BDAS [Dunphy
and Yan 2007]. De Angeli et al. [2005] stated that the weakness of all knowledge-
based authentication systems reflects a tradeoff between security and human memory
constraints. Based on the memory tasks involved in remembering and inputting pass-
words, these two papers divided all extant graphical password schemes into three cate-
gories. In recall-based systems (aka drawmetric systems), no password cue is given. Ex-
emplary schemes include DAS [Jermyn et al. 1999], YAGP [Gao et al. 2008], Passdoodle
[Varenhorst et al. 2004], PassShapes [Weiss and De Luca 2008], and Pass-Go [Tao and
Adams 2008]. In recognition-based systems (aka cognometric systems or searchmetric
systems [Renaud 2009]), users need to memorize a portfolio of images during password
creation and recognize them to log in. Exemplary schemes include Face [Brostoff and
Sasse 2000], Story [Davis et al. 2004], and Déjà Vu [Dhamija and Perrig 2000]. And, in
cued-recall systems (aka locimetric systems), users remember specific locations within
an image. Exemplary schemes include PassPoints [Wiedenbeck et al. 2005b], Cued
Click-Points [Chiasson et al. 2007], and Persuasive Cued Click-Points [Chiasson et al.
2012]. PGA is more like a cued-recall system because users need to recall the locations
of gestures, and the chosen background images could serve as cues for users. However,
PGA also has some features that were only previously observed in recall-based and
recognition-based systems. For example, in contrast to previous cued-recall systems in
which users only remember locations, PGA also requires users to recall their gesture
types associated with locations. The task to recall gesture types in PGA is similar to
the tasks in recall-based systems. According to our study, user-chosen gesture types are
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highly related to the attributes of user-chosen gesture locations. Therefore, background
images provide users with cues for both gesture locations and gesture types. In addi-
tion, to use PGA, users need to recognize certain objects in background pictures and
even recognize the full pictures to counter phishing attacks. This recognition task gives
PGA some features of recognition-based systems. In a sense, PGA blurs the boundaries
of the three aforementioned graphical password categories.

The basic idea of attacking graphical password schemes is to generate dictionaries
that consist of potential passwords [Thorpe and van Oorschot 2004]. However, the lack
of sophisticated mechanisms for dictionary construction affects the attack capabilities
of existing approaches. Davis et al. [2004] used the relations of users’ demographic
information and their passwords to guess Face passwords. Thorpe and Van Oorschot
[2007] proposed a method to harvest the locations of training subjects’ clicks on pic-
tures in click-based passwords to attack other users’ passwords on the same pictures.
In the same paper [Thorpe and Van Oorschot 2007], they presented another approach
that creates dictionaries by predicting hotspots using image-processing methods. van
Oorschot and Thorpe [2008] cracked DAS using password complexity factors, such as
reflective symmetry and stroke-count. Dirik et al. [2007] modeled user choice in Pass-
Points and proposed automated dictionary attacks. Salehi-Abari et al. [2008] proposed
an automated attack on the PassPoints scheme by ranking passwords with click-order
patterns. However, the click-order patterns introduced in their approach could not
capture users’ selection processes accurately, especially when a background image
significantly affects user choice. To attack PGA passwords, there are at least three
requirements an attack approach should meet: (i) the approach should work on com-
plex gestures as well as on simple click, (ii) the approach should learn patterns from
harvested passwords even if they are not collected from the target picture, and (iii)
the approach should generate dictionaries for previously unseen pictures. Our attack
framework differs from previous efforts by introducing the idea of a selection function
that abstracts and models users’ password creation processes and therefore meets all
three requirements.

The security and vulnerability of text-based password have attracted considerable
attention because of several infamous password leakage incidents in recent years.
The approaches for guessing text-based passwords greatly influenced the design of our
attack framework. Zhang et al. [2010] studied password choices over time and proposed
an approach to attack new passwords from old ones. Castelluccia et al. [2012] proposed
an adaptive Markov-based password strength meter by estimating the probability of
passwords using training data. Kelley et al. [2012] developed a distributed method to
calculate how effectively password-guessing algorithms could guess passwords. Even
though the attack framework we presented is dedicated to cracking PGA passwords,
the idea of abstracting users’ selection processes of password construction introduced in
this article could also be applicable to cracking and measuring text-based passwords.
Veras et al. [2014] presented such an approach to extract and understand semantic
patterns in text passwords.

11. CONCLUSION

We described an empirical analysis of Windows 8TM PGA passwords collected from
our online user studies. The empirical analysis has helped us understand user choice
patterns in background picture, gesture location, gesture order, and gesture type. We
presented a novel attack framework that makes use of the extracted user choice pat-
terns to guess Windows 8TM PGA passwords. Using the proposed attack framework,
we demonstrated that our approach was able to crack a considerable portion of picture
passwords in various situations. Based on the empirical analysis and attack results,
we comparatively evaluated PGA with a set of extended benefits from four categories;
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namely, usability, deployability, security, and privacy. We also discovered that PGA
provides more usability benefits than all other schemes we analyzed. However, it has
more limitations in deployability and security benefits than most of the schemes we
analyzed. Moreover, it brought up some privacy concerns, such as disclosing users’ im-
ages. We believe the findings discussed in this article could advance the understanding
of PGA and its advantages and limitations.
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