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ABSTRACT
Recently, the use of well-defined, security-relevant pieces of run-
time information, a.k.a., attributes, has emerged as a convenient
paradigm forwriting, enforcing, andmaintaining authorization poli-
cies, allowing for extended flexibility and convenience. However,
attackers may try to bypass such policies, along with their enforce-
ment mechanisms, by maliciously forging the attributes listed on
them, e.g., by compromising the attribute sources: operative systems,
software modules, remote services, etc., thus gaining unintended ac-
cess to protected resources as a result. In such a context, performing
a proper risk assessment of authorization policies, taking into ac-
count their inner structure: rules, attributes, combining algorithms,
etc., along with their corresponding sources, becomes highly conve-
nient to overcome zero-day vulnerabilities, before they can be later
exploited by attackers. With this in mind, we introduce RiskPol, an
automated risk assessment framework for authorization policies,
which, besides being inspired by well-established techniques for
vulnerability analysis such as symbolic execution, also introduces
the very first approach for proactively assessing risks in the context
of a series of attacks based on unintended attribute manipulation
via forgery. We validate our approach by resorting to a set of case
studies we performed on both real-life policies originally written in
the English language, as well as a set of policies obtained from the
literature, which show not only the convenience of our approach
for risk assessment, but also reveal that some of those policies are
vulnerable to attribute-forgery attacks by just compromising one
or two of their attributes.

CCS CONCEPTS
• Security and privacy → Access control; • Software and its
engineering → Risk management;
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1 INTRODUCTION
Contemporary software systems have increased in size and com-
plexity, evolving from small, monolithic, closed, and proprietary
infrastructures into a series of big, dynamic, distributed, heteroge-
neous, and highly-interconnected modules that, besides providing
their intended functionality as efficiently as possible, also relieve
developers from fully implementing code from scratch, allowing
for them to focus instead on leveraging existing solutions to better
meet their needs. As an example, there is nowadays a plethora of
third-party application programming interfaces (APIs), web services,
dynamic libraries, and so on that are provided by a considerable
amount of independently-run sources, e.g., companies, institutions,
government agencies, etc., thus depicting an emerging trend that
is likely to stay in the foreseeable future.

In such a context, authorization policies may certainly bene-
fit from leveraging security-related information that is provided
by these sources to write rich and flexible policies that, besides
meeting very specific needs, may also be evaluated and enforced in
more efficient ways. With this in mind, attribute-based access control
(ABAC) [17] has recently gained the attention of both academia and
industry as a convenient way to specify, store, evaluate and enforce
authorization policies by representing this security-related infor-
mation as well-defined constructs known as attributes. However,
despite the inherent benefits introduced by this emerging approach,
some security concerns still exist, as modern software infrastruc-
tures are known to be the target of attacks that leverage existing
and previously-unknown security vulnerabilities [12]. Moreover,
zero-day attacks are now becoming more frequent, leaving security
officers with little or no time to respond, thus having devastating
consequences [5]. In the context of ABAC policies, attackers may
try to leverage vulnerabilities in third-party software to deliberately
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modify attributes at will, thus allowing them to compromise sen-
sitive protected resources by either gaining unintended access to
them or by denying rightful users from accessing them at runtime.

In order to address these concerns, this paper proposes Risk-
Pol, a trust-based, collaborative, and automated risk assessment
framework for protecting ABAC policies, which is inspired in sym-
bolic execution [19], a well-established technique for vulnerability
discovery and analysis. In RiskPol, trust is modeled as a qualita-
tive perception on the security state of a given software system,
allowing for numerical scores representing trust to be assigned to
attribute sources. Later, these scores are transfered to the attributes
they provide, thus effectively simulating the runtime evaluation
(execution) of the ABAC policy, and allowing for a consolidated
score to be calculated, taking into account its inner structure, e.g.,
policy rules, combining algorithm, etc. This way, as the score as-
signed to the source of an attribute A changes, e.g., as a result of
security vulnerabilities or attacks on the source itself, so does too
the score assigned to A, thus ultimately affecting the overall risk
scores of all the policies attribute A is listed on.

Overall, this paper makes the following contributions:

• First, we provide a definition for a series of attacks based on
forging attributes by means of deliberate and unintended ma-
nipulation, which may be launched to bypass existing policy
enforcement mechanisms, ultimately forcing the runtime eval-
uation of an ABAC policy to a result convenient to the attacker,
e.g., allowing unintended access to protected resources.

• Second, we introduce the policy-trusting problem, which in-
volves the assessment of the risks involved for a given policy
or a set of policies in the presence of detected vulnerabilities
in the attribute generation process, which may deviate in the
aforementioned attribute-forgery attacks.

• Third, we describe an approach inspired in symbolically exe-
cuting a given set of ABAC policies, taking as an input the trust
scores of the attributes listed on them, obtaining an overall
trust score for individual policies or policy sets, which is then
used to accurately assess risks in the context of the attacks just
mentioned.

• Finally, we present the results of different case studies involving
both a set of policies collected from real-life ABAC enterprises,
which allowed us to properly relate attributes, their correspond-
ing sources, and their impact on assessing security risks for
ABAC policies.

2 BACKGROUND
DefiningAttributes. In ABAC, an authorization request is granted
upon the satisfaction of constraints, a.k.a., rules, involving attributes:
properties, characteristics, or traits of subjects, objects, and even
environment conditions that are relevant under a given security
context [17]. For the purposes of this paper, we abstractly define
attributes as 3-tuples with the following composing elements: a
datatype, which defines both the nature of the data and range held
by the attribute, e.g., String, Integer, etc., a name or identifier, which
uniquely identifies the attribute within a given ABAC implemen-
tation, and a set of values, all of them within the range defined
for the corresponding datatype. As an example, <String, OS.name,

Figure 1: An ABAC policy depicting attributes from differ-
ent sources. When evaluating a policy, attribute OS.name is
provided by a device manufacturer, e.g., by means of a OS
native call (1). Attribute user.age may be obtained from an
ID credential issued by a local government (2). Also, the
env.location attribute may be retrieved from a remote Geo-
Spatial service (3). Finally, the role.name may be obtained
from an access token released by an authorization server (4),
which, if targeted by an attribute-forgery attack, may com-
promise the policy as a whole.

{"Android"}> denotes an attribute containing the name of the opera-
tive system running in a mobile device. Attributes are leveraged by
policy makers, who are in charge of crafting policies by establishing
relationships between attributes, access entities, e.g., end-users and
protected resources, and access rights, a.k.a., permissions.

Attribute Sources. According to the U.S. National Institute of
Standards and Technology (NIST) [17], dedicated infrastructures
may be introduced in the foreseeable future allowing for attributes
to be defined, created, and assigned to access entities. Such infras-
tructures, hereafter referred in this paper as sources, may be in
turn deployed by different independently-run organizations such
as companies, government agencies, non-profit corporations, etc.,
and may be implemented as operative system modules, dedicated
application software, remote services, etc. This way, a given source
may provide different attributes, and may be run by a single or a
conglomerate of organizations in a collaborating scheme. In addi-
tion, a given organization may run different sources at once. This
way, leveraging attributes from distinct sources may greatly in-
crease the flexibility of ABAC, e.g., easier policy specification and
enforcement: no need to manually assign attributes to entities, no
need for entities to hold many different attributes at once.

Defining Trust and Risk. We leverage the definition of trust
provided by Gambetta [14]: "Trust (or, symmetrically, distrust) is a
particular level of the subjective probability with which an agent will
perform a particular action, both before [we] can monitor such action
(or independently of his capacity of ever to be able to monitor it) and
in a context in which it affects [our] own action". In the context of
ABAC policies, such definition may include a perception on the
overall security state of the attribute creation and assignment pro-
cesses (actions) as carried on by each source (agents). This includes
any supporting software and hardware, as well as any business
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logic that allows for the source to create and assign attributes to
access entities. Such a perception may also include the way security
guidelines and best practices are implemented within the organiza-
tional domains defined by the organizations running the sources.
We also leverage the definition of risk as stated by Vaughn et al.
[34]: "Risk is the probability that a particular threat will exploit a
particular vulnerability of the system." As hinted in Section 1, such a
definition in the context of ABAC policies may be extended to the
probability of attackers (threats) exploiting security vulnerabilities
in the attribute creation and assignment infrastructures depicted by
the sources (systems). In addition, we also consider the probability
that, once a given attribute source has been compromised, attackers
may try to manipulate its attributes at will to compromise a set of
ABAC policies.

Running Example. Fig. 1 presents a sample ABAC policy re-
stricting access to a mobile application to end-users who are 21
years or older of age, are using a mobile phone running the Android
OS, and are physically located in the United States. Also, access is
granted to a development engineer identified by the role ‘Admin’
for the purposes of testing, debugging, and control. In such a policy,
attributes are obtained from different organizational sources, each
of them implementing its own attribute creation and assignment
infrastructure, which is in turn protected by an independently-run
security domain. During policy evaluation time, attributes may be
effectively retrieved from those sources and used for policy evalua-
tion, e.g., a policy information point (PIP) [24].

3 PROBLEM STATEMENT
Assumptions. For the purposes of this paper, we make the follow-
ing assumptions: first, we assume attackers perform an initial re-
connaissance phase in which they can collect sufficient information
about their targeted ABAC policies, e.g., attributes, rules, as well as
the combining algorithms and the policy evaluation order. Second,
we also assume the evaluation and enforcement infrastructures of
ABAC policies stay out of reach and cannot be compromised by
attackers, which can only resort to the attribute-forgery techniques
to be discussed below. Finally, in this paper, we consider a sub-
set of the well-known eXtensible Access Control Markup Language
(XACML) [24], due to its maturity and deployment in practice for
expressing ABAC policies. Listing 1 provides a sample XACML
encoding featuring our running example as described in Fig. 1.

Attribute-Forgery Techniques. In the context of attribute-ba-
sed policies, an attribute whose value can be deliberately modified
without proper consent from its originating source may not provide
strong security guarantees, as attackers may be allowed to modify
the attribute’s value at will to meet the requirements defined in a
given policy, thus effectively bypassing it in unintended ways. Even
in locally-run domains, attributes may be the subject of such attacks,
e.g., changing file and system attributes such as names, current
time, location, etc., as a result of the unintended actions carried
out by dedicated malware agents. With this in mind, following the
definition provided in Section 1, attackers may try to compromise
attributes as follows: first, attackers may try to forge the attribute
entirely, crafting the datatype, name, and value components before
presenting it to a given policy evaluation engine. Second, attackers
may try to manipulate the value component of an existing

Listing 1: Our Running Example Policy in XACML.

1 <?xml version="1.0">
2 <Policy PolicyId="SamplePolicy"

3 RuleCombiningAlgId="deny-unless-permit">

4 <Target/>
5 <Rule Effect="Permit"><Target>
6 <AnyOf><AllOf>
7 <Match MatchId="string-equal">

8 <AttributeDesignator AttributeId="OS.name"/>

9 <AttributeValue>Android</AttributeValue>

10 </Match>
11 </AllOf></AnyOf>
12 <AnyOf><AllOf>
13 <Match MatchId="string-equal">

14 <AttributeDesignator AttributeId="env.location"/>

15 <AttributeValue>USA</AttributeValue>

16 </Match>
17 </AllOf></AnyOf>
18 <AnyOf><AllOf>
19 <Condition>
20 <Apply
21 FunctionId="integer-greater-than-or-equal">

22 <AttributeDesignator AttributeId="user.age"/>

23 <AttributeValue>21</AttributeValue>

24 </Apply>
25 </Condition>
26 </AllOf></AnyOf>
27 </Target></Rule>
28 <Rule Effect="Permit"><Target>
29 <AnyOf><AllOf>
30 <Match MatchId="string-equal">

31 <AttributeDesignator AttributeId="role.name"/>

32 <AttributeValue>Admin</AttributeValue>

33 </Match>
34 </AllOf></AnyOf>
35 </Target></Rule>
36 </Policy>

attribute at will, provided the modifications fall within the range
defined by the datatype component. Third, attackers may try to ma-
nipulate attributes by compromising their creation and assignment
infrastructures. As an example, referring back to Fig. 1, a dedicated
malware may try to intercept native OS calls such that the value of
the OS.name is changed. Moreover, attackers may also try to com-
promise the remote Geo-Spatial server providing the env.location
attribute, such that it always returns a location within the United
States despite the actual location of the end-user.

Attribute-Forgery Attacks. In the context of ABAC policies,
we now introduce different attack models intended to subvert the
access decision result rendered by a policy evaluation process.

• First, we introduce theAPermit attack, which attempts to force
the evaluation of an ABAC policy P to the permit result, thus
granting unintended access to protected resources. This attack
assumes there exists at least one rule within P that evaluates to
permit, and also assumes the rule combining algorithm in place
allows for such a decision to be ultimately delivered.

• Second, we introduce the ADeny attack, which, conversely, is
intended to force the evaluation of P to the deny result, thus
allowing attackers to deny legit access to the resourcesmediated
by P, thus effectively performing a denial-of-service (DoS) attack.
We also assume there exists at least one rule within the target
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policy that evaluates to deny, and a rule combining algorithm
in place allows for such a result to be produced.

• Third, we also consider the AIndet attack, which is intended
to force the evaluation of P to the indeterminate result, in an
attempt to remove P from the authorization decision process,
following the XACML multi-policy evaluation scheme defined
in [24], thus possibly forcing the evaluation of an alternative
policy Q that happens to be more convenient for the attacker,
e.g., a policy enlisting another set of attributes under the at-
tacker’s control. For this attack, we assume there exist at least
two policies P and Q that are evaluated in sequential order as a
response to an access request. Also, we assume the combining
algorithm for P allows for the indeterminate decision to trigger
the evaluation of policy Q as a consequence.

The Policy-Trusting Problem. Despite the inherent benefits
of multiple-sourced attributes for attribute-based policies, previous
work in the literature [17] [24] commonly assumes all existing
attribute sources are fully trusted all the time. However, such an
assumptionmay not be always feasible in practice, as modern ABAC
infrastructures may rely on a heterogeneous and independently-
run set of attribute sources as discussed in this paper, which may
be the target of dedicated attacks tailored to disrupt their internal
cyber-infrastructures. In such a context, the policy-trusting problem
involves allowing policy makers and security officers to maintain
a perception on the security state of the attribute sources they
leverage for their ABAC policies. Later, such a perception should
be then taken into account when crafting ABAC policies, such
that only attributes from good-standing, trusted, sources are used,
allowing for policy makers to properly assess the risks involved
when the security state of a given attribute source is perceived to
have deteriorated at a given moment of time.

Assessing Risks for ABAC Policies. With all this in mind,
risk assessors may need to properly assess the risks involved for a
given set of ABAC policies when an attribute, or a set of attributes,
has been compromised by means of attribute-forgery techniques.
Referring back to Section 2, risk can be understood as the probability
that a particular policy-based attack will be carried out against an
ABAC policy given a particular vulnerability, e.g., a forged set of
attributes, has been detected. In such a context, risk assessors may
be concerned with following questions:

Q-1 Given a set of compromised attributesA listed in anABAC
policy P, what is the risk that a successful policy-based
attack can be carried out against P?. Referring to our run-
ning example, risks assessors may want to know if theAPermit
attack can be carried out against our sample policy if the user.
age attribute has been compromised, i.e., by forging the creden-
tial containing it to depict a value greater or equals to 21. As
depicted in Fig. 1 and Listing 1, compromising such an attribute
in isolation may not allow for the APermit to take place, as
the structure of our sample policy, by means of an AND op-
erator, requires two other attributes, namely the OS.name and
the env.location to be compromised as well in order to gain
access to the mobile application.

Q-2 Given a set of uncompromised attributes U listed in P,
what is the attribute setU’ ⊆ U that will increase the risk
of P failing for any of the policy-based attacks? Following

our running example, risks assessors may want to know what
attributes may make the APermit attack more likely. In such
a case, compromising the role.name attribute, i.e., by forging
the access token containing it to depict the ‘Admin’ value, may
allow for such an attack to take place.

Q-3 Given that P is likely to fall for a policy-based attack X,
are there any structuralmodifications toP, e.g., adding/re-
moving attributes and / or rules, such that the risk of X
successfully targeting P is diminished? Following our pre-
vious example, compromising the role.name attribute may
make the APermit attack more likely to succeed. Possible mod-
ifications of our sample policy may include removing such
attribute completely, thus making the OR operator unnecessary,
and simplifying the policy as a result.
In the next section, we present an approach focused on question

Q-1 , helping risk assessors to accurately estimate an answer to it.
In addition, in Section 7, we discuss how our approach may help in
the development of solutions for questions Q-2 and Q-3, which are
left for future work.

4 RISKPOL: TRUST-BASED RISK ASSESSMENT
FOR ABAC POLICIES

In order to provide support for solving the problems just discussed,
we now present RiskPol, an automated framework that allows for
both policy makers and security officers to become risk assessors
for the policies under their control, such that security incidents
can be properly addressed and mitigated. In the rest of this section,
we elaborate on the intrinsics of our proposed approach, which is
graphically depicted in Fig. 2.

4.1 Determining Scores for Attributes
Relating Trust and Risk. Following the definitions introduced
in Section 2, within our proposed RiskPol approach, trust is mod-
eled as a perception on the security state of the attribute creation
and assignment processes as carried out by sources. In addition,
risk is conceived as a perception on the likehood of attackers ex-
ploiting security vulnerabilities found in such attribute creation
and assignment processes, such that the attribute-forgery attacks
also discussed in Section 3 can eventually take place. Therefore,
within RiskPol, a high degree of trust on either attribute sources,
the attributes themselves, as well as on ABAC policies, has a direct
correspondence with a low level of perceived risk, meaning that
there is a low likelihood that an attack on an ABAC policy will take
place. Conversely, a low level of trust is perceived as a high level
of risk, meaning that an attack is highly likely and a risk assess-
ment procedure, by the means to be discussed in this section, is
recommended.

Modeling Trust. Following the definition just described, in Risk-
Pol, trust is modeled as a numerical value to be defined in the
context of a given implementation, whichmaymaintain a consistent
numerical scale, e.g., a mathematical total order over a set, to allow
for calibrating and comparing different values of trust between
distinct sources. As an example, a sample trust scale may include
values in the set {0, 1}, being 1 the score indicating complete trust
and being 0 the one denoting no trust at all (distrust). In such a
setting, a value of 0 denotes a lesser value of trust with respect
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to 1, e.g., 0 <1. As just mentioned, implementations of our RiskPol
approach may also rely on their own trust scales that better fit their
specific needs, e.g., introducing intermediate values for different
degrees of trust.

Attribute-level Scores. With this in mind, trust in attribute
sources can be represented by a source-level score, which can be
initially assigned subjectively by individual risk assessors, as shown
in Fig. 2, which happen to have an educated view of the current
security state of such a source, e.g., the existence and/or absence of
vulnerabilities. This way, attributes in a given ABAC policy can be
trusted as much as the trust score assigned to their corresponding
sources. As shown in Definition 1, an attribute scores can be directly
obtained from the score assigned to its source infrastructure.

Definition 1.
Score(Attribute) = Score(SOURCE(Attribute))

Referring back to our running example shown in Fig. 1, the
device manufacturer, which provides the OS.name attribute, should
be trusted to properly retrieve the value of the OS running on
the device by means of a dedicated kernel-level service that can be
queried through a native OS call. Initially, such a source may receive
a trust value of 1. However, if such a source is eventually found to
be affected by a newly-discovered vulnerability, e.g., it is possible
to change the name of the OS as retrieved by the native call, risk
assessorsmay change their perception of trust with respect to such a
source as a result, e.g., reducing it to 0. Later, in Section 7, we discuss
an alternative approach for initially assigning the initial source-
level scores, which involves a set of collaborating third-parties,
potentially allowing for extended reliability and convenience.

4.2 Calculating Scores for Policy Rules.
Rule-level Scores.Asmentioned in Section 1, within RiskPol, trust
scores for ABAC policies are calculated by leveraging their in-
ner structure, e.g.,their rule-combinatorial algorithm, e.g., deny-
overrides, the logical operators on each rule, as well as the number
of attribute-based rules they contain, to intelligently combine the
scores obtained for each attribute, as just described before, into a
consolidated policy-level one. We start our discussion detailing how
the scores for each policy rule can be obtained, we then continue
describing how to combine such rule-level scores into a consoli-
dates policy-level one, and then finalize this section by showing
how the scores from different ABAC policies can be combined into
a single multi-policy-level score.

Processing Policy Rules. Policy rules encoded in XACML poli-
cies can be expressed in disjunctive normal form (DNF), which
clearly separates each rule/condition independently and provides a
convenient abstract representation of the internal structure of each
policy, allowing for each attribute listed in an original policy rule to
appear only once in its corresponding DNF formula, thus providing
a convenient representation for accurately calculating risk for the
purposes of our approach. Initially, we parse XACML policy rules
into an intermediate representation in the form of conjuctive nor-
mal form (CNF) by leveraging the <AnyOf>and <AllOf>predicates
on attributes. For instance, in the XACML representation of our
running example shown in Listing 1, each attribute located inside
such constructs is added inside an independent formula component,
subsequently known as DNF-Terms, which are then linked together

Figure 2: In RiskPol, initial trust scores for attribute sources
are determined by risk assessors (1). Later, such scores are
forwarded to the attributes the sources provide (2), and are
combined using a mathematical model, ultimately creating
a trust score to estimate risk (3).

to form a CNF formula by means of the ∧ operator. Later, our imple-
mentation converts CNF representations into DNF by leveraging
the well-known De Morgan’s laws [26]. For instance, our running
example can be then listed as a DNF formula of the form ((OS.name)
∧ (user.age) ∧ (env.location)) ∨ (role.name).

Definition 2.
Score(DNF-Term) = max(Scores(ATTRS(DNF-Term)))

Once each rule policy has been converted into a DNF represen-
tation, an intermediate trust score is obtained for each DNF-Term
following Definition 2: the auxiliary functions ATTRS and Scores
(not shown) return a set containing the trust scores of each attribute
listed in a given DNF-Term, following the approach depicted in Defi-
nition 1. Once such a set of scores has been calculated, themaximum
value among them is returned as a result.

Definition 3.
Score(Rule) = min(Scores(DNF-TERMS(Rule)))

Subsequently, the trust score for a policy rule is obtained by calcu-
lating the minimum score among the trust scores obtained for each
of its composing DNF-Terms, as shown in Definition 3. With that in
mind, the auxiliary functions DNF-TERMS and Scores retrieve both
the DNF-Terms themselves as well as their corresponding scores
following Definition 2.

Assessing Risks for Policy Rules. In RiskPol, the use of the
minimum and maximum functions in Definitions 2 and 3 follows
an approach in which a policy/rule is as trusted (i.e., as risky) as
its less trusted (i.e., its riskier) rule/attribute. As mentioned earlier,
attributes inside DNF-Terms are joined together using AND opera-
tors. Therefore, in order to compromise a DNF-Term, e.g., forcing it
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to be evaluated to true, all of the attributes inside of the DNF-Term
must be compromised. Following such a reasoning, the maximum
function in Definition 2 selects the score of most trusted attribute,
i.e., the one that may be the most difficult to compromise. In a
similar fashion, DNF-Terms inside policy rules are joined together
by means of OR operators. Therefore, Definition 3 selects the mini-
mum trust score among all the DNF-Terms inside a policy rule, as
compromising a single one of them may be enough to compromise
the enclosing policy rule, and, the ABAC policy as a whole.

4.3 Calculating Scores for Policies.
Policy-level and Multi-Policy-level Scores. Once the scores for
each of the rules contained within an ABAC policy have been
calculated, the overall policy-level score can be obtained by taking
such rule-level scores along with the rule combining algorithm
implemented by the policy, following the description of the XACML
rule combining algorithms as presented in [24]. In a similar fashion,
the scores obtained for a set of ABAC policies can be combined into
a single multi-policy-level score by combining their corresponding
policy-level scores along with their policy combining algorithm,
as shown in Definitions 4 and 5. In both procedures, the auxiliary
function ALG retrieves the combining algorithm of each policy or
set of policies.

Definition 4.
Score(Policy) = combine(Scores(RULES(Policy)), ALG(Policy))

Definition 5.
Score(Policies) = combine(Scores(Policies)), ALG(Policies))

Policy-level Score Calculation Algorithm. The process of
trust score calculation for XACML policies is shown in Algorithm 1.
As an initial step, the input policy is parsed by an auxiliary routine
(not shown), retrieving the policy’s rule combining algorithm (if
any)1, as well as the sets of policy rules whose decision result is
either deny or permit (line 1). The retrieval of a trust score for each
rule proceeds in line 4 as follows: initially, both sets are then merged
into a single set (line 4) for convenience purposes. Then, each rule r
is converted to an abstract DNF representation as described before,
which is made up of different DNF-terms, e.g., each sub-formula
that is not glued together by means of an OR operator.

As an example, the DNF representation of our running example
((OS.name) ∧ (user.age) ∧ (env.location)) ∨ (role.name) can
be further divided into the DNF-terms ((OS.name) ∧ (user.age)
∧ (env.location)) and (role.name). The trust score for an DNF-
term is calculated by obtaining the maximum value among the
trust scores defined for the attributes listed on it (lines 8-15). Later,
the minimum trust score obtained among all the DNF-terms is
used as the final trust score for policy rule r (lines 16-21), sepa-
rating between the rules whose final decision result is deny and
the ones whose result is permit. Finally, the auxiliary algorithm
combine_scores() combines the scores of all policy rules and pol-
icy sets in a process we describe next.

Combining Policy Rule Scores. Table 1 provides an abstract
representation of the the combine_scores() algorithm, which im-
plements the logic for combining rule-level and policy-level scores,
1In case no combining algorithm is specified for a given XACML policy, our approach
assumes the Deny-Overrides algorithm by default.

Data: An XACML Policy POL.
Result: A Set of Trust Scores for POL depicting the Policy

Attacks described in Section 3.
1 (Comb −Alд, RDeny , RPermit ) =

parse_XACML_Policy(POL);
2 SDeny = {};
3 SPermit = {};
4 R = RDeny ∪ RPermit ;
5 foreach rule r in R do
6 Term_Scores = {};
7 DNF_TERMS = convert_to_DNF(r );
8 foreach term in DNF_TERMS do
9 ATTR_Scores = {};

10 ATTRS = get_Attribute_IDs(term);
11 foreach attr in ATTRS do
12 ATTR_Scores = ATTR_Scores ∪

get_Attribute_Score(attr );
13 end
14 Term_Scores ∪ max(ATTR_Scores);
15 end
16 if r in RDeny then
17 SDeny ∪ min(Term_Scores);
18 end
19 if r in RPermit then
20 SPermit ∪ min(Term_Scores);
21 end
22 end
23 return combine_scores(SDeny , SPermit , Comb −Alд);

Algorithm 1: Trust Score Calculation for XACML Policies.

which is in turn based in the description of XACML combining
algorithms as shown in [24]. Taking as an input the sets SPermit
and SDeny of trust scores defined for the rules depicting the Permit
and Deny results respectively, and the rule combining algorithm
defined for the policy under processing, the procedure retrieves
a consolidated score for each of the attacks defined in Section 3,
namely,APermit ,ADeny , andAIndet . As an example, the two rules
contained within of our running example policy shown in Listing 1
will be included within the policy’s SPermit set, as such an evalua-
tion decision has been set for each of them, whereas the policy’s
SDeny set would be empty. Next, the combine_scores() algorithm
obtains the trust score of the policy rule that would allow for each
attack to be carried out successfully, thus following the approach
implemented by RiskPol in which a policy is trusted as much as its
less-trusted, i.e., riskier, rule. For instance, in order for an attacker
to carry on the ADeny attack on an XACML policy implementing
the Deny Overrides combining algorithm, thus ultimately forcing
the Deny result, at least one of the policy rules depicting the Deny
decision must be compromised. Therefore, the combine_scores()
algorithm retrieves the score of the less-trusted rule depicting such
a decision, which can be in turn found as the minimum trust score
value contained within the SDeny set. A graphical depiction of this
strategy is shown in Fig. 3.
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Figure 3: Attacking our running example policy: given the
Deny-Unless-Permit combining algorithm, attackers must
compromise any of the listed rules to successfully perform
the APermit attack (1). Subsequently, an attacker must com-
promise both rules to perform the ADeny attack (2).

4.4 Assessing the Risks of Attacks.
Following the reasoning just explained, we now describe how to
combine the scores of policy rules and sets into a consolidated one
for risk assessment. For readability purposes, we hereafter refer to
either a policy rule, or a policy as a whole (in the case of policy
sets), as targets. Also, we refer to the successful runtime evaluation
of a target T, which has been obtained by means of any of the
attribute-forgery attacks discussed in this paper, as the firing of T.
Conversely, in the opposite direction, the prevention of a successful
evaluation of a target T is referred as neutralizing T. In practice, a
target may be neutralized by forcing the policy evaluation engine
to deliver the Not Applicable effect by means of an attribute-forgery
attack. Also, a target T is also said to be indeterminate if the policy
evaluation engine under attack will retrieve the Indeterminate effect
as a result of a runtime error induced by means of an attribute-
forgery attack. As an example, some XACML policy decision point
(PDP) implementations [1] will retrieve Indeterminate as a result
of a parsing error when processing attributes at runtime. Such an
error can be in turn induced by means of attribute manipulations
as it is described in this paper.
• APermit for D-O or F-A Targets. For the APermit attack to
succeed when the Deny-Overrides (D-O) algorithm is used, an
attacker must neutralize all targets depicting the Deny effect,
and then make sure at least one target depicting the Permit ef-
fect is fired. Therefore, combine_scores algorithm first selects
the minimum value contained within the SPermit set, which
corresponds to the less-trusted, a.k.a., the riskier, target depict-
ing the Permit result, i.e., the easiest for an attacker to fire. Later,
the algorithm selects the maximum value of contained within
the SDeny set, which corresponds to the most-trusted target
depicting the Deny result, i.e., the harder for an attacker to neu-
tralize. The same procedure is followed for the First-Applicable
(F-A) combining algorithm, as the combine_ scores procedure
assumes an scenario in which targets that are combined using
the F-A algorithm are evaluated in a random order.

• APermit for P-O or D-U-P Targets. For the APermit attack
and targets featuring the Permit-Overrides (P-O) algorithm, an
attacker must fire at least target depicting the Permit effect,
regardless of the evaluation result of all other ones. Therefore,

Table 1: The combine_scores Auxiliary Algorithm. D-O
stands for Deny-Overrides, P-O for Permit-Overrides, D-U-P
for Deny-Unless-Permit, P-U-D for Permit-Unless-Deny, and
F-A for First-Applicable.

Alg. APermit ADeny AIndet

D-O
max(

min(SPermit ),
SDeny )

min(SDeny )
max(

SDeny ∪

SPermit )

P-O min(SPermit )
max(min(SDeny ),

SPermit )

max(
SDeny ∪

SPermit )
D-U-P min(SPermit ) max(SPermit ) N/A
P-U-D max(SDeny ) min(SDeny ) N/A

F-A
max(

min(SPermit ),
SDeny )

max(min(SDeny ),
SPermit )

max(
SDeny ∪

SPermit )

the combine_scores algorithm selects the lowest score within
the SPermit set, which corresponds to the less-trusted target
being considered. The same strategy is applied for the Deny-
Unless-Permit (D-U-P) algorithm.

• APermit for P-U-D Targets. For the APermit attack and tar-
gets depicting the Permit-Unless-Deny (P-U-D) algorithm, the
attacker must make sure all targets depicting theDeny effect are
neutralized. In that regard, the effort to effectively neutralize
all Deny targets may be as much as neutralizing the less-riskier
one. Thus, the combine_scores algorithm returns the largest
score contained within the SDeny set.

• ADeny for D-O or P-U-D Targets. For targets depicting the
Deny-Overrides (D-O) or the Permit-Unless-Deny (P-U-D) com-
bining algorithms, an attacker must fire at least one target
depicting the Deny effect, regardless of any other target under
consideration. Therefore, the effort required may be as hard
as defeating the less-trusted target. Thus, the combine_scores
algorithm selects the minimum score within the SDeny set.

• ADeny for P-O or F-A Targets. In order for the ADeny at-
tack to succeed in targets depicting the Permit-Overrides (P-O)
or the First-Applicable (F-A) algorithms, all targets depicting
the Permit effect must be neutralized, and at least one target
depicting the Deny effect must be fired. With that in mind,
the combine_scores algorithm selects the maximum score be-
tween all the targets depicting the Permit effect, which corre-
sponds to the one that is the hardest to neutralize. Also, the
minimum score within the SDeny set, which corresponds to the
easiest target featuring Deny to fire, is also selected. From these
two intermediate results, the algorithm selects the maximum
score, which, once again, represents the action that is likely
harder for the attacker to achieve.

• ADeny for D-U-P Targets. For the ADeny attack to succeed
in targets featuring the Deny-Unless-Permit (D-U-P), all targets
depicting the Permit effect must be neutralized, regardless of
any other ones under consideration. Therefore, the combine_
scores algorithm retrieves the maximum value in the SPermit
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set, which in turn corresponds to the hardest target featuring
Permit that must be neutralized by the attacker.

• AIndet for D-O, P-O or F-A Targets. In order for the AIndet
attack to succeed on targets featuring the Deny-Overrides (D-O),
the Permit-Overrides (P-O), as well as the First-Applicable (F-A)
algorithms, combining algorithm, at least one target must be
forced to the Indeterminate effect, and all targets featuring the
Deny (D-O) and the Permit (P-O) effects must be neutralized.
That being said, the combine_scores retrieves the maximum
value within the SDeny and SPermit sets, as the effort invested
by the attacker to force the indeterminate corresponds to the
hardest target among all of the ones under consideration. Fi-
nally, it must be noticed that according to the description of
the policy combining algorithms featured in [24], the AIndet
attack is not possible when the Deny-Unless-Permit (D-U-P) and
Permit-Unless-Deny (P-U-D) algorithms are in use.
Alternatives for the F-A Algorithm. An alternative scenario

for the First-Applicable combining algorithm may consider a rule
evaluation order, other than random, that is known to the attacker.
With that in mind, alternative calculation formulas may be listed
as:
• APermit : max(max(First(SDeny )), SF ir st_Permit ),
• ADeny : max(max(First(SPermit )), SF ir st_Deny ),
• AIndet : max( SDeny ∪ SPermit ),

where First(S) obtains the very first score within the set labeled
as S, and SF ir st_Permit and SF ir st_Deny denote the trust score as-
signed to the first rule known to the attack that depicts either the
Permit or the Deny result, respectively. Finally, our combine_sco-
res() algorithm assumes the input XACML policies are well-for-
med, that is, policies depicting a given rule combining algorithm
have at least one rule listing the algorithm’s decision result. As
an example, well-formed policies depicting the Deny-Overrides al-
gorithm have at least one rule depicting the Deny decision result.
Handling of policies failing to exhibit this feature is left as an deci-
sion for implementers of our RiskPol approach.

5 EXPERIMENTAL EVALUATION
In order to provide evidence of the suitability of RiskPol for accu-
rately assessing risks on ABAC policies of varying nature, structure,
and attribute sources, we first present a case study depicting ABAC
policies written in XACML that were collected from a series of pre-
vious work in the literature. Later, we present a second case study
involving policies written in the English language that were also
collected from online sources, which were then manually translated
into an XACML representation for further analysis. For each case
study, we present descriptions of the experimental datasets, the
methodologies used, as well as the results obtained, which focused
mostly on addressing Question Q-1 as depicted in Section 3. We
implemented all supporting code for RiskPol in Java, leveraging a
Dell Laptop running Windows 10, with 16 GB of RAM and 1128 GB
of HD storage. Such implementation is available for distribution
upon request to the authors.

Moreover,in the rest of the experiments discussed in this paper,
we assumed a trust scale in the set defined by {0,1}, where 0 denotes
the absence of trust and 1 denotes the complete presence of it.

Table 2: Results for the Natural 2 Policy.

Attribute ID APermit ADeny AIndet

Role 1 1 -1
Action 1 1 -1
Report 0 0 -1
Project 0 0 -1
Portfolio 0 0 -1

Conversely, a score of 0 for any of the APermit , ADeny and AIndet
attacks denotes that carrying on such an attack is possible under the
attribute trust configuration scenario, whereas a score of 1 denotes
the attack is highly unlikely.

5.1 Real-Life/ Literature XACML Policies.
Dataset Description. Tables 8 and 9, which for spacing reasons are
shown in Appendix A, present a summary of the XACML policies
that we collected from different online and literature sources for the
purposes of our case study. As an example, policies HGABAC [3],
NGAC [13], Natural 1 and 2 [33], Example 7, 11, 13 and 15[30], and
PolTree [21] were extracted from previous work in the literature
focused on ABAC, whereas policies such as KMarket [32] and the
Continue [20] where obtained from public repositories of produc-
tion software. On average, they contained from 2 to 6 policy rules
each, and each policy rule contained from 2 to 6 different attributes.

Methodology. Initially, we inspected each of the original policy
files for compliance with the subset of the XACML language we
are considering as a part of this work, as mentioned in Section 3.
For some policies whose syntactic structure would slightly differ,
e.g., using constructs not considered in our approach, a semantics-
preserving transformation was attempted. As an example, policies
containing all attribute-based constraints within the <Target> con-
struct only, were transformed into a new semantically-equivalent
policy containing the same constraints within a <Rule> construct,
which supported by RiskPol, similar to the exemplary syntax shown
in Listing 1. Later, we focused mostly on simulating a situation
as the one defined by Question Q-1, we started by simulating one
compromised attribute, and continue with sets of two and three
attributes from the ones listed on each policy. Finally, we simulated
the APermit , ADeny and AIndet attacks previously discussed in
Section 3, by setting different trust scores for each source of the
aforementioned attributes and ultimately leveraging our implemen-
tation of RiskPol to calculate Policy-level scores for each policy in
our sample set, following the procedures described in Algorithm 1
and Table 1.

Results. As a result of our experiments, we noticed that several
of the surveyed policies are vulnerable to attribute-forgery attacks
in case one, two or three attributes listed on them are compromised.
As an example, Table 2 shows an excerpt of the experimental results
for policy Natural 2 [33]. When a single attribute, namely Report,
Project, or Portfoliowas compromised, theAPermit andADeny
attacks were possible. In addition, as shown in Table 3, different
attribute sets of size 2, e.g., {Role, Action} and {Action, Report}, also
allow for the APermit and ADeny attacks to become feasible. That
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Table 3: Results for the Natural 2 Policy.

Attr 1 Attr 2 APermit ADeny AIndet

Role Action 0 0 -1
Report 0 0 -1
Project 0 0 -1
Portfolio 0 0 -1

Action Report 0 0 -1
Project 0 0 -1
Portfolio 0 0 -1

Report Project 0 0 -1
Portfolio 0 0 -1

Project Portfolio 0 0 -1

Table 4: Results for the PPS_pcMember_rc Policy Set.

Policy Attr 1 Attr 2 APermit ADeny AIndet

1 role action-type 0 1 0
2 role action-type 0 1 0
3 role UserId 1 0 0
4 role action-type 0 1 0

may be due to the presence of several OR (|) operators in the original
policy rule R1:
R1: ((((Role, "CPM Advisor") & (Action, "access")) |
(Report, "CP&E Reports") | (Project, "Views") |
(Portfolio, "Portfolio Reporting Views")))

In an additional example, Table 4 shows an experiment in which
attribute sets of size 2 were taken as compromised for the PPS_
pcMember_rc policy set. In a similar fashion, the combination of at-
tribute rolewith several other attributes in such a policy ultimately
resulted in the three attribute-forgery attacks to become possible.
Similarly, Table 5 shows the results of an experiment featuring
policy HGABAC in which attribute sets of size 3 were simulated
compromised. This time, the APermit attack was possible in sev-
eral attribute combinations, whereas the ADeny attack was only
possible for the Role, Action, and Type attributes.

Overall, we observed the following patterns in our surveyed
policies: first, we noticed that the presence of many OR (|) oper-
ators in the CNF representation of such policies may allow for
attribute-based attacks to become possible. Second, we noticed the
absence of such operators, and the presence of policy rules having
attributes joined together by means of the AND (&) operator has
the opposite effect, as the aforementioned attacks become more
difficult to perform. Such a case can be observed in policy PolTree,
which is shown in Table 8 in Appendix A. With those insights, we
believe a plausible mitigation strategy may include reducing the
number of OR operators and increasing the number of attributes
within a policy that are joined together using the AND operator.
We further elaborate on how to effectively implement such an idea
in practice as a part of our discussion for addressing Question Q-3
in Section 7, which details our plans for future work.

Table 5: Results for the HGABAC Policy.

Attr 1 Attr 2 Attr 3 APermit ADeny AIndet

Role Action Type 0 0 -1
Department Action Type 0 1 -1

Java Action Type 0 1 -1
C Action Type 0 1 -1

C++ Action Type 0 1 -1

Table 6: Results for the NC-2 English-to-XACML Policy.

Name APermit ADeny AIndet

(network, "state") 1 1 1
(network, "agency") 1 1 1
(location, "local") 1 1 1
(location, "remote") 1 1 1

approved 1 1 1
(security, "policies") 1 0 1
(work, "request") 1 0 1
negative-impact 1 0 1

(apparatus, "computer") 1 1 1
(network, "access") 1 1 1

5.2 English-Language Policies.
Dataset Description. In this case study, we resorted to a series
of real-life authorization policies contained in documents written
in the English language, most of them in PDF format, which were
obtained from different online sources. Overall such documents
depict a series of authorization policies and constraints over a vari-
ety of application domains: network, web-based, and system-level
administration, as well as physical security of enterprises. Among
their sources, we can cite the National Health Service (NHS) of
the United Kingdom [22], the State Government of North Carolina
[31], among others. Table 7 shows convenient representation of
such policies, their source documents, along with the subsets of
attributes that, if compromised, allow for attribute-forgery attacks
to succeed, as we will discuss next.

Methodology. Initially, documents were obtained through a
series of online searches depicting the keywords authorization,
access policy and access control on a popular search engine. Next,
for each obtained document, a preliminary analysis was conducted
to determine if it contained text describing authorization policies.
As an example, sentences of the form: "Access to restricted and/or
highly restricted data shall be restricted to authorized individuals who
require access to the information as part of their job responsibilities"
[31] were categorized as potential authorization policies. Next, a
list of attributes, along with their hypothetical attribute sources
were identified for each candidate document, and a translation from
the English language to XACML format was then carried out. A
simplified version of our translation process is show in Table 7.
Finally, we proceeded with our experimental analysis by resorting
to a technique similar to the one discussed previously for our first
case study: we simulated theAPermit ,ADeny andAIndet attacks by
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Table 7: A Set of English-Language Policies Collected for Experimental Purposes.

Policy Info CNF - Rule Effect APermit ADeny AIndet

NC-1 R1: ((ID, "root") | (ID, "admin")) & ((end, "disable") | {ID, change {unemployed} N/A
(P-U-D) (change, "credentials")) - Deny unemployed, {needless}
[31] R2: (unemployed) | (needless) - Deny notify}

R3: ((end, "system accounts") | (remove | transfer) | ((change, "info") |
(change, "permission"))) & (notify) - Deny

NC-2 R1: ((network, "state") & (network, "agency")) & N/A {security} {security,
(D-O) ((location, "local") | (location, "remote")) & (approved) - Permit {work} apparatus,
[31] R2: ((security, "policies") | (work, "request") | (neg-impact)) - Deny {neg-impact} approved}

R3: ((apparatus, "computer") | (network, "access control system") &
(!approved) - Deny

GPRC R1:(software, "mechanism") & (ID & (security, "password") N/A {software, ID, {software, ID,
(D-O) & unique) - Deny security, security,
[16] R2: ((software, "system") & (software, "application")) & unique} unique}

((security, "2-factor authentication") & lock) - Permit
SANS R1: (encrypted & ((security, "pass-phrase") &amp; (secure)) - Permit N/A {ID, {ID,
(D-O) R2: (ID & (security, "password")) & (secure) - Permit approved} approved}
[29] R3: ((ID, "InfoSec") | (ID, "manager")) & (!approved) - Deny
NHS R1: (ID & approved) & ((ID & unique) & private) & N/A N/A N/A

(D-U-P) ((change, "password") & approved) - Permit
[22]

setting different trust scores for each attribute source and ultimately
calculating Policy-level scores for each policy in our set.

Results. Overall, the results obtained confirm the previous ones
observed for our first case study: policy structure has considerable
influence on Policy-level RiskPol scores. In addition, we observed
that policies containing a varied number of DNF-terms, which are
mix together by means of AND operators, obtain better Policy-level
scores, ultimately results in less-risky policies. Table 6 contains
the sample results for the NC-2 policy shown in Table 7. As with
the results featured for our previous case study, each row in Ta-
ble 6 shows the result of manually setting the RiskPol source-level
score of each attribute to 0 whereas the rest of the attributes in
the policy stay with a value of 1. In most cases, the structure of
such a policy prevents the occurrence of our discussed policy at-
tacks when a single attribute gets a low source-level score. Only the
ADeny attack was possible when modifying the security, work,
and negative-impact attributes, due to the structure of policy
NC-2, e.g., the use of OR ( | ) operators in rule R2 as well as the
Deny-Overrides combining algorithm.

6 RELATEDWORK
Risk Models for Authorization. Previous work has focused on
developing assessment models for dynamic permission assignment
based on the current risk state of the system. This way, before as-
signing a permission to an end-user, the system evaluates the risk
of doing so based on recent (possibly real-time) information [11]
[9]. Following this paradigm, Ni et al. [23] introduced an approach
leveraging a fuzzy engine for estimating risk before releasing a
permission to a given user. In the context of role-based access con-
trol (RBAC) [28], Bijon et al. [4] proposed an extension to the core
RBAC model that includes a so-called risk-threshold as a part of

RBAC user sessions, allowing for a given session to be dropped in
case the calculated risk value goes beyond a predefined threshold,
thus potentially preventing user-based abuse of already-authorized
permissions. Similarly, Chen et al. [7] presented an approach lever-
aging XACML as the policy language for expressing RBAC policies,
extending the language with specific construct to model risk as well.
In the context of attribute-based authorization, Kandala et al. [18]
presented an approach combining the concept of risk and ABAC,
developing a model based on UCON [25] extensions. Alternatively,
Choi et al. [10] presented a risk assessment framework for ABAC in
the context of medical information systems. Our RiskPol approach
is also intended to incorporate a perception on the security state
of a given system before an authorization policy can be evaluated
and enforced, such that the system becomes aware of recent events,
e.g., vulnerabilities or incidents, which may have an impact on the
overall authorization process. However, our approach is intended
to protect policies themselves from attacks that may originate from
compromised attributes, instead of evaluating risk for each user
in isolation before or during the time the authorization process
takes place. In our approach, a risk assessment performed over a
whole policy may affect all users being served by it, e.g., by apply-
ing one of the proactive actions discussed in Section 7. Therefore,
our policy-level approach differs from previous approaches on risk
assessment that calculate risk at the user-level only.

Credential-based Risk Analysis. Risk assessment approaches
have been also proposed for credential-based access control. As
an example, Chapin et al. [9] introduced a trust management logic
that provides formal risk assessment by associating risk levels with
authorization elements, allowing for tolerable levels of risk to be
rigorously enforced. In addition, Goodrich et al. [15] provided a solu-
tion for an authenticated dictionary for attribute-based credentials,
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allowing for attribute sources to collectively publish information to
a common repository, which can be later queried by other parties
through the network. While these approaches have influenced our
RiskPol approach, ABAC comprises a wider model that may include
credentials as an implementation subset. As an example, credentials
may be used to securely communicate attributes between sources
and policy evaluation engines. Also, they may provide proof of
a correct attribute-user assignment as stated by the correspond-
ing attribute source. Moreover, ABAC provides a wider theoretical
model in which attributes may be also retrieved by other imple-
mentation strategies. As an example, while certain attributes may
benefit from a cryptography-based protection while in transit, some
implementations, e.g., an XACML PIP module, may simply retrieve
the attribute directly from sources by implicitly trusting both the
communication channel, e.g., a native OS call, as well as its orig-
inating source (the OS), as it is depicted in the OS.name attribute
included in our running example shown in Fig. 1.

Distributed Risk Assessment and Attribute Dictionaries.
Finally, Aven [2], introduced a risk assessment framework modeling
both security and safety in the concept of information technology
infrastructures. Information about security incidents is generated
by a set of trusted partners and distributed actively to remote en-
terprise, thus allowing for the fast and efficient dissemination of
security-related issues. Our RiskPol approach is inspired by such a
concept as it also relies on strong collaborative settings for sharing
information that can be valuable for risk assessment. However, our
approach goes a step further by providing means for each risk as-
sessor to automatically calculate policy-level scores by leveraging
the information previously-shared by the risk valuators, thus pro-
viding the foundations for an automated approach for efficient and
expedited risk assessment.

7 DISCUSSION AND FUTUREWORK
Collaborative Risk Assessment. Following the approach pre-
sented in Section 4, we expect risk assessors to work together to
determine proper scales for modeling trust in the context of differ-
ent domains or collaborative communities. As an example, security
officers handling risk within a Medical context may want to have
their own perception of trust based in the attributes and the corre-
sponding attribute sources they consume within their own domain.
For such a purpose, we have envisioned a scheme in which collab-
orators may rely on each other for determining changes in trust
scores as well as for distributing those updated scores to other
members of the community. In such a scheme, risk assessors may
delegate the initial assessment of source-level scores to a series of
third-party, well-deputed organizations known as risk valuators,
which, besides having updated knowledge on the attribute creation
and assignment infrastructures implemented by sources, may also
be able to promptly assess when a recently-discovered vulnera-
bility, or a security incident, may have an impact on the overall
trust perception of a given source. In practice, risk assessors may
be allowed to choose n different valuators so they can implement a
k-out-of-n strategy for score updates, e.g., allowing for k valuators
to suggest a change in a given score before such a change is actually
implemented. This way, risk assessors and valuators may engage in

a stock market model [8], in which information on updated source-
level scores is distributed in proactive, expedite, and continuous
ways, thus possibly improving the overall risk assessment process
as a result.

Limitations. Despite our promising results, the inherent ben-
efits of our approach for risk assessment, and the potential for
handling the attribute-forgery attacks we have presented as a part
of this paper, we have also identified the following limitations to
our approach. As shown in Section 5, the current version of our
approach handles only a relevant subset of the vast XACML syntax,
as it is described in [24]. However, as shown in Section 5.1, our ap-
proach can cover the syntax constructs depicted by the policies we
have collected for our first case study, which showcases the applica-
bility of our approach for handling real-life authorization scenarios.
Future work may focus on providing support for extended XACML
syntax as well as other policy combining algorithms described in
[24] which were not supported as a part of this work. In addition,
we plan to continue our work on the generation of synthetic poli-
cies which can be generated in different sizes and with varying
structural characteristics, at the same time the effectiveness of our
proposed approach is not affected.

Addressing Question Q-2. As mentioned in Section 3, Ques-
tion Q-2 is concerned with determining what attributes within the
set A of attributes listed in a target policy set may be more suitable
for successfully performing an attribute-forgery attack. A naive
approach would include considering using RiskPol on all subsets
of attributes contained within the powerset 2A. However, such an
approach may be quite inefficient in the presence of a large set
of target policies and / or in the case of A being of a large size.
Moreover, considering all subsets within such powerset may not be
feasible in practice. For instance, compromising the entire subset
A’ = A may be quite difficult if multiple independently-run attribute
sources exist for all attributes in A. Based on the experimental
results shown in Section 5, future work may focus on detecting
subsets within 2A of size 1 to 3, as compromising such a number of
attributes may be enough to successfully launch an attack.

Addressing Question Q-3. As mentioned in Section 3, Ques-
tion Q-3 refers to the situation in which a policy set is deemed as
risky. A straight-forward approach would include shutting down
access to all the resources being guarded by a now-risky policies.
However, such a conservative scheme may have negative conse-
quences when it comes to user experience, as commonly-accessed
resources may be unexpectedly denied as a result. In addition, such
a strategy gets complicated by the fact continuous monitoring by
security officials may be needed to restore the shutdown resources
back to service. An alternative approach would include augmenting
it with additional attributes and rules, originated from other more
trusted sources, such that the overall trust score goes back to a
value above the risk threshold. As an example, previous work has
explored the possibility of enhancing ABAC policies with additional
attributes that are automatically retrieved from users [27].

Advanced Risk Assessment Models. In addition, as stated in
Section 2, a risk assessment model must consider the probability
that, once a given attribute source has been compromised by at-
tackers, they will try to specifically target the set of ABAC policies
protecting the resources of a given organizational entity. In our
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RiskPol approach, as described in Section 4, we have taken a rather
conservative approach by assuming that every single policy whose
enlisted attributes are compromised may automatically become at
risk, that is, the probability of attackers attacking any of those poli-
cies is the same. With this in mind, future risk assessment models
may consider adding extra parameters to allow for assessors to in-
troduce the probability that attackers may try to specifically target
their organizational policies, assuming a previous security vulnera-
bility or incident within their corresponding attribute sources has
been found, thus producing a customized assessment as a result.

8 CONCLUSIONS
In this paper, we have discussed the problem of assessing risks for
ABAC policies in the presence of potential attacks based on unin-
tended attribute manipulation and forgery. In order to address this
problem, we have presented RiskPol, a novel and intuitive solution
for properly assessing the risks involved in trusting the attribute cre-
ation and assignment infrastructures as provided by heterogeneous
sources, such that the risks of potential attribute-forgery attacks can
be effectively assessed and mitigated. Finally, we believe that Risk-
Pol can serve as a strong foundation for implementing a proactive
framework involving the distribution, collection, and processing of
source-based trust scores for the purposes of automated risk assess-
ment, allowing for the proper reaction and handling of zero-day
vulnerabilities, as well as the subsequent mitigation of potential
security incidents, among a series of collaborative partners.
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APPENDIX A
Finally, we present a summary of the policies we collected as a part
of our experimental procedures described in Section 5. For each
policy, we include its CNF representation, its main policy combining
algorithm, as well as a reference to its source. In addition, we list
the subsets of attributes listed on each policy that, if compromised,
allow for each attribute-forgery attack to succeed.
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Table 8: A Set of XACML Policies Collected from the Literature and Online Sources.

Policy Info CNF - Rule Effect APermit ADeny AIndet

HGABAC R1: ((Role, "IT_Manager") | (Department, "IT")) & ((Action, "Read") & {Role, {Role, N/A
(D-U-P) (Type, "Network")) -Permit Action, Action,
[3] R2: ((Role, "DevOps_Manager") | (Java, "True")) & ((Action, "Read") & Type} Type}

(Type, "Dev")) - Permit {Department,
R3: ((Role, "DevOps_Manager") | (Java, "True") | (C, "True") | Action,
(C++, True)) & ((Action, "Read") & (Type, "Deploy")) - Permit Type}
R4: (((Role, "CTO")) & ((Action, "Read") & (Type, "General"))) - Permit

NGAC R1: (((Action, "read") | (Action, "write")) & ((Role, "doctor") | {Action, {Action, {Action,
(P-O) (Role, "intern")) & ((Diff_Locations, "True"))) - Deny Role, Role, Role,
[13] R2: ((Role, "intern") & (Action, "write")) - Deny PatientStatus} PatientStatus} PatientStatus}

R3: ((Action, "read") | (Action, "write")) & ((Role, "doctor") &
(PatientStatus, "crititcal")) - Permit

Metamodel R1: ((role, "manager") & (actionId, "view") & (objType, "rec")) - Permit {role, N/A N/A
(D-U-P) R2: (((role, "employee")) & ((actionId, "view") | (actionId, "edit")) & actionId,
[6] ((objectType, "record")) & ((department, "own "))) - Permit objType},

R3: ((((role, "employee") & (actionId, "edit"))) & {role,
((owner, "employee")) & ((status, "draft"))) - Permit actionId,
R4: ((((role, "manager") & (actionId, "publish"))) & owner,
((status, "final")) & (((owner, "employee") & status}
(subordinate, ""employee")))) - Permit

Natural 2 R1: ((((Role, "CPM Advisor") & (Action, "access")) | {Report}, {Report} N/A
(D-U-P) (Report, "CP&E Reports") | (Project, "Project Views") | {Project}, {Project},
[33] (Portfolio, "Portfolio Reporting Views"))) - Permit {Portfolio} {Portfolio}

{Role, Action} {Role, Action}
Example 7 R1: (((ID, "manager")) & ((Time, "09:00:00") & {ID} {ID, N/A
(D-U-P) (Time, "17:00:00")) & ((Location, "office"))) - Permit Time,
[30] R2: (((ID, "clerk")) & ((Sys_load, "low") | (ID, "manager"))) - Permit Location}

Example 11 R1: (((Role, "Guest")) & ((Time, "09:00:00") & {Role, N/A N/A
(D-U-P) (Time, "17:00:00"))) - Permit Time},
[30] R2: (((Role, "Adult")) & ((Age, "20")) & ((Country, "Japan") | {Role,

(Country, "New Zealand"))) - Permit Age,
R3: (((Role, "Adult") & (Role, "American")) & ((Age, "18")) & Country}
((Country, "Canada") | (Country, "USA"))) - Permit

Example 13 R1: (((Object, "Profile")) & ((Occupation, "student")) & {Object, N/A N/A
(D-U-P) ((Common Friends,"5"))) - Permit Bob’s Friend},
[30] R2: (((Object, "Profile")) & ((Bob’s Friend, "True"))) - Permit {Object,

R3: (((Object, "photo")) & ((Trust, "0.25"))) - Permit Trust}
Example 15 R1: (((SecureLevel, "5")) & ((JobTitle, "junior-manager") | N/A N/A N/A

(D-U-P) (JobTitle, "senior-manager")) & ((Location, "False"))) - Permit
Natural 1 R1: ((((Role, "Pharma Scientist") & (Action, "Scan"))) & N/A N/A N/A
(D-U-P) ((Info, "Trial team details") | (Info, "Trial Team CV")) &
[33] ((Merit_Committee, "True")) & (((Certificate, "Board") &

(Certificate, "Surger"))) & ((Date, "2017-03-01"))) - Permit
PolTree R1: (Des, "Professor") & (Dept, "CSE") & (Type, "Assignment") & N/A N/A N/A
(D-U-P) (Conf, "High") & (Day, "Weekday") & (op, "Modify") - Permit
[21] R2: (Des, "Professor") & (Dept, "CSE") & (Type, "Paper") &

(Conf, "High") & (Day, "Weekday") & (op, "Modify") - Permit
R3: (Des, "Student") & (Dept, "CSE") & (Type, "Assignment") &
(Conf, "High") & (Day, "Weekend") & (op, "Read") - Permit
R4: (Des, "Professor") & (Dept, "ECE") & (Type, "Assignment") &
(Conf, "Low") & (Day, "Weekend") & (op, "Modify") - Permit
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Table 9: A Set of XACML Policies Collected from the Literature and Online Sources.

Policy Info CNF - Rule Effect APermit ADeny AIndet

KMarket-
Blue R1: ((totalAmount, "100")) - Deny N/A {totalAmount} N/A

(D-O) R2: (((resource-id, "Liquor") | (resource-id, "Medicine"))) - Deny {resource-id}
[32] R3: (((resource-id, "Drink"))) & ((amount, "10")) - Deny

KMarket-
Sliver R1: ((totalAmount, "500")) - Deny N/A {totalAmount}, N/A

(D-O) R2: (((resource-id, "Liquor"))) - Deny {resource-id}
[32] R3: (((resource-id, "Drink"))) & ((amount, "50")) - Deny {resource-id,

R4: (((resource-id, "Medicine"))) & ((amount, "5")) - Deny amount}
KMarket-

Gold R1: ((totalAmount, "1000")) - Deny N/A {totalAmount}, N/A

(D-O) R2: (((resource-id, "Liquor"))) & ((amount, "10")) - Deny {resource-id,
[32] amount}
PPS_

isMeetingFlag_rc P1-R1: (((role, "pc-chair")) & ((action-type, "read")) & N/A N/A N/A

(F-A) ((action-type, "write"))) - Permit
[20] P2-R1: (((role, "pc-member")) & ((action-type, "read"))) - Permit

PPS_paper_rc P1-R1: (((role, "pc-chair")) & ((action-type, "delete"))) - Permit {role, N/A {role,
(F-A) P2-R1: (((role, "pc-member")) & ((action-type, "read")) & action-type} action-type}
[20] ((isEq-meetingPaper-resId, "true"))) - Permit

P3-R1: (((role, "pc-member")) & ((action-type, "create"))) - Permit
PPS_paper-
conflicts_rc P1-R1: (((role, "pc-chair")) & ((role, "admin")) & {role, {isConflicted} {isConflicted},

(F-A) ((action-type, "read")) & ((action-type, "write"))) - Permit action-type}, {role,
[20] P2-R1: (((role, "pc-member")) & ((isConflicted, "true")) & {role, action-type}

((action-type, "read"))) - Permit isMeeting, {role,
P3-R1: (((role, "pc-member")) & ((isMeeting, "true")) & action-type} isMeeting,
((action-type, "read"))) - Permit action-type}
P4-R1: (((isConflicted, "true"))) - Deny

PPS_paper-
review_rc P1-R1: (((role, "pc-chair")) & ((isConflicted, "false"))) - Permit {role, {isConflicted} {role,

(F-A) P2-R1: (((role, "pc-chair") & ((isSubjectsMeeting, "true")) & isConflicted}, isConflicted},
[20] & ((action-type, "read"))) - Permit {role, {role,

P3-R1: (((role, "pc-chair")) & ((action-type, "create")) & action-type} action-type}
((action-type, "delete"))) - Permit
P4-R1: (((isConflicted, "true"))) - Deny
P5-R1: (((role, "pc-member")) & ((isConflicted, "false")) &
((action-type, "read"))) - Permit
P5-R2: (((role, "pc-member")) & ((isConflicted, "false")) &
((action-type, "read")) & ((phase, "discussion"))) - Permit

PPS_paper-
submission_rc P1-R1: (((role, "pc-chair")) & ((role, "pc-member")) & {role, N/A {role,

(F-A) ((action-type, "chair"))) - Permit action-type} action-type}
[20] P2-R1: (((role, "subreviewer")) & (action-type, "read"))) - Permit

PPS_
pcMember_rc P1-R1: (((role, "pc-member")) & ((action-type, "read"))) - Permit {role, {role, {role,

(F-A) P2-R1: (((role, "admin")) & ((action-type, "write")) & action-type} action-type} action-type}
[20] ((action-type, "create"))) - Permit

P3-R1: (((role, "pc-member")) - Deny
P4-R1: (((role, "admin")) & ((action-type, "delete"))) - Permit
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