
A Rule-Based Framework for Role-Based
Delegation and Revocation

LONGHUA ZHANG, GAIL-JOON AHN, and BEI-TSENG CHU
University of North Carolina at Charlotte

Delegation is the process whereby an active entity in a distributed environment authorizes another
entity to access resources. In today’s distributed systems, a user often needs to act on another
user’s behalf with some subset of his/her rights. Most systems have attempted to resolve such
delegation requirements with ad-hoc mechanisms by compromising existing disorganized policies
or simply attaching additional components to their applications. Still, there is a strong need in
the large, distributed systems for a mechanism that provides effective privilege delegation and
revocation management. This paper describes a rule-based framework for role-based delegation and
revocation. The basic idea behind a role-based delegation is that users themselves may delegate role
authorities to others to carry out some functions authorized to the former. We present a role-based
delegation model called RDM2000 (role-based delegation model 2000) supporting hierarchical roles
and multistep delegation. Different approaches for delegation and revocation are explored. A rule-
based language for specifying and enforcing policies on RDM2000 is proposed. We describe a proof-
of-concept prototype implementation of RDM2000 to demonstrate the feasibility of the proposed
framework and provide secure protocols for managing delegations. The prototype is a web-based
application for law enforcement agencies allowing reliable delegation and revocation. The future
directions are also discussed.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Management, Security

Additional Key Words and Phrases: Role, access control, delegation, revocation, rule-based

1. INTRODUCTION

The objective of delegation is to get the job done by sending it to someone
else, for example, a subordinate. In McNamara [2002], effective delegation is
defined as “the hallmark of good supervision.” Effective delegation not only
develops people who are ultimately more fulfilled and productive, but also frees
the delegating users up to more important issues. In access control systems,

Portions of this paper appeared in preliminary form under the title “A Rule-Based Framework for
Role-Based Delegation” in Proceedings of the 6th ACM Symposium on Access Control Models and
Technologies (SACMAT), Chantilly, VA, May 3–4, 2001, pp. 153–162.
Authors’ addresses: Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu, Laboratory of Informa-
tion Integration, Security and Privacy (LIISP), Department of Software and Information Systems,
College of Information Technology, University of North Carolina at Charlotte, Charlotte, NC 28223;
email: {lozhang,gahn,billchu}@uncc.edu; URL: http://www.sis.uncc.edu/LIISP.
Permission to make digital/hard copy of all or part of this material without fee for personal or class-
room use provided that the copies are not made or distributed for profit or commercial advantage,
the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2003 ACM 1094-9224/03/0800-0404 $5.00

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003, Pages 404–441.

A Rule-Based Framework for Role-Based Delegation and Revocation • 405

the delegation requirement arises when a user needs to act on another user’s
behalf for accessing resources. This might be for a limited time, for example,
a vacation, sharing resources temporarily with others, and so on. Otherwise
users may perceive security as a hindrance and bypass it. With delegation, the
delegated user has the privileges to react to situations or access information
without referring back to the delegating user.

To operate such a delegation system successfully, an access control system
must be established to enable the flow of information for both parties to have full
and rapid access to relevant information. In the simplest case, Alice delegates
her role to Bob. Upon Bob’s request, a service will be granted if the requested
service is already granted to Alice. Naturally, access decisions need to take this
delegation notion into account. Also, it must be possible to revoke a delegated
role. For example, Alice may want to revoke Bob from the delegated role later.
A revocation mechanism must be provided and security policies must specify
this action.

Delegation is an important factor for secure distributed computing environ-
ment. There are many definitions of delegation in the literature [Abadi et al.
1993; Barka and Sandhu 2000a; Gasser and McDermott 1990; Gladney 1997].
In general, it is referred to as one active entity in a system that delegates its
authority to another entity to carry out some functions on behalf of the for-
mer. The most common delegation types include user-to-machine, user-to-user,
and machine-to-machine delegation. Although the entities involved in these
delegation types are different, they all have the same consequence—the prop-
agation of access rights. Propagation of access rights in decentralized collabo-
rative systems presents difficult problems for traditional access mechanisms,
where authorization decisions are made based on the identity of the resource re-
quester. Unfortunately, access control based on identity may be ineffective when
the requester is unknown to the resource owner. Over the years, researchers
have proposed a variety of distributed access control mechanisms. Delegation
has been recognized as one of mechanisms to support access management in a
distributed computing environment [Aura 1999]. Blaze et al. [1996, 1999] in-
troduced trust management for decentralized authorization. Some trust man-
agement systems, such as KeyNote and SPKI/SDSI, use credentials to delegate
permissions. Lampson et al. [1992] addressed how one principal can delegate
some of its authority to another one. They showed a way to express delegation
with access control calculus [Abadi et al. 1993] and also used timeouts to revoke
delegations.

Role-based access control (RBAC) has been widely accepted as an alterna-
tive to traditional discretionary and mandatory access controls [Ferraiolo et al.
1995; Sandhu et al. 1996; Sandhu 1997]. RBAC is an enabling technology for
managing and enforcing security in large-scale and enterprise-wide systems.
Researchers and vendors have proposed many enhancements of RBAC models
in the past decade. A general model, commonly referred as RBAC96 [Sandhu
et al. 1996], has become widely accepted by the information security community.
In RBAC96, the central notion is that permissions are associated with roles,
users are assigned to appropriate roles, and users acquire permissions by being
members of roles. Users can be easily reassigned from one role to another. Roles

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

406 • Longhua Zhang et al.

can be granted new permissions. Permissions can be easily revoked from roles
as needed. Hence, RBAC provides a means for empowering individual users
through role-based delegation in a fully distributed environment.

Although the importance of delegation has been recognized for a long time,
the concept has not been supported in current role-based systems [Ferraiolo
et al. 1995; Sandhu et al. 1996]. To delegate a role, the delegating user has to
request a security officer to assign the role to the delegated user. Such a model
would significantly increase the management efforts in a large-scale, highly
decentralized environment because of the dynamic nature of delegations and
the continuous involvement from security officers. In order to support effective
delegation, management of user assignment could not realistically be central-
ized to a small group of security officers. The emerging technology of role-based
delegation [Barka and Sandhu 2000a; Zhang et al. 2001] provides a means
for decentralizing user assignment with empowerment of individual users. It
enables decentralization of administrative tasks.

In this paper, we focus on user-to-user delegation, where a user delegates
his/her role to another user. A preliminary version of our previous work is ap-
peared in Zhang et al. [2001], which is further explored by Liebrand et al. [2002].
In our approach, we deal with administrative-directed delegation [Linn and
Nyström 1999] including multistep delegation in role hierarchies. We propose
a rule-based framework for role-based delegation. A rule-based system is a sys-
tem where all behaviors are governed by a set of explicit rules. The framework
includes a role-based delegation model called RDM2000 (role-based delegation
model 2000) [Zhang et al. 2001] and a rule-based language for specifying poli-
cies on RDM2000. The enforcement of policies is also discussed. We present
a proof-of-concept prototype implementation of RDM2000 to demonstrate the
feasibility of the proposed delegation model and provide secure protocols for
managing delegations.

The rest of this paper is organized as follows. Section 2 describes background
and motivates our work. Section 3 defines components of RDM2000 including
role-based delegation and revocation. In Section 4, we describe the semantics
of rule-based specification language for delegation and revocation policies. A
proof-of-concept implementation is presented in Sections 5 and 6. We compare
our work with previous related work in Section 7. Section 8 concludes this paper
and outlines future directions.

2. MOTIVATION

We give examples in a law-enforcement organization to clarify the problem.
The police department’s community-oriented problem solving is an effort to
develop partnerships between law enforcement agencies and members of the
community to address issues of concern. Working closely with the people in lo-
cal areas, police officers are able to prevent crime from happening rather than
dealing with it after its occurrence. The community problem-oriented policing
system (CPOPS) is proposed to improve the service as a part of the police de-
partment’s ongoing community policing efforts. In CPOPS, problem-oriented
policing projects are developed to identify potential problems and resolve them

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 407

Fig. 1. An example of organizational role hierarchy and users.

before they become significant. By putting all related information together and
allowing delegation, it enables officers to respond quickly to urgent calls and
increases the proactive time.

In a simple problem-oriented policing project, police officers can be involved
in many concurrent activities, for example, conducting initial investigations,
investigating and analyzing crimes, preparing police reports, and assessing
projects. The specific level of access and permissions a user can have will be
determined by his/her responsibilities in the organization. In order to achieve
this, users are identified to the system as having one or more roles in each
project, such as lead officer, participant officer, policing reporter, and so on.

Figure 1 illustrates the organizational role hierarchy and users’ role mem-
berships in the organization. There is a junior-most role PLO to which all police
officers in the organization belong. The senior most role director (DIR) assesses
and coordinates projects. There are two policing projects in this organization;
each project has a senior-most project lead role (PL1, PL2) and junior-most
Project role (P1, P2). Between them are participant officer roles (PO1, PO2)
and their junior project reporter roles (RE1, RE2), as well as project collabora-
tor role (PC1, PC2). Project lead officers have major administrative duties for
the project. Participant officers maintain twenty-four hours a day, seven days
a week service for the project. Collaborators are people from other projects or
external organizations that need access to project information. Reserve Officers
(RSO) work on special assignment as needed. Community service officers (CSO)
are nonsworn personnel who conduct a variety of nonhazardous law enforce-
ment duties, for example, preparing policing report, performing traffic control,
and so on. Figure 1(b) shows users and their role memberships after the user
role assignment by security officers.

Delegation is an important feature in CPOPS. In this example, John, a di-
rector, needs to coordinate two problem-oriented policing projects under his

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

408 • Longhua Zhang et al.

supervision. As one of the projects, Project 1, confronts problems that are par-
ticularly perplexing, collaborations are necessary for information sharing with
members from Project 2. Since John believes in delegating responsibility, he
would like to delegate certain responsibilities to Cathy and her staff to collab-
orate closely. Of course, he wants all of this to happen securely and to monitor
the progress of the delegation. This scenario requires role-based delegation in
a variety of places: John needs to delegate his role to Cathy as well as the
rights to further delegate the delegated role; Cathy needs to delegate the del-
egated role to her staff as necessary; further delegation is possible when the
staff members are performing the collaboration tasks. If there is no delegation
support, security officers have to be involved in every single collaborative activ-
ity. Such an approach makes real-time collaboration difficult if not impossible,
given the large number of users that participate in these collaborations and the
twenty-four hours a day, seven days a week working environment.

From this example, we identified the major requirements of role-based del-
egation as follows:r Support for multistep delegation. This feature defines whether or not a del-

egation can be further delegated. Single-step delegation does not allow the
delegated role to be further delegated. Sometimes, it would be desirable to
further delegate the delegated role. Multistep delegation allows a delegated
user to further delegate the delegated role.r Support for different revocation schemes. Revocation is an important pro-
cess that must accompany the delegation. It refers to the process to take
away the delegated privileges, or the desire to go back to the state before
privileges were delegated. There are different revoking schemes, among them
are strong and weak revocations, cascading and noncascading revocations,
as well as grant-dependent and grant-independent revocations.r Support for constraints. Constraints can be imposed on other components
of RBAC for laying out higher-level organizational policies. Delegation and
revocation constraints specify restrictions on when the delegation or revoca-
tion performed is valid, or on when a cascaded delegation or revocation is
valid. In this paper, we focus on those constraints applied to the users, roles,
and their assignments, for example, separation of duty (SOD), maximum role
cardinality, and so on. We require that constraints be enforced while carrying
out delegations and revocations.r Support for partial delegation. This feature is also referred to as totality
of a delegation. It means how completely the permissions assigned to the
delegating role can be delegated. Total delegation means all permissions are
delegated; partial delegation means only subsets of the permissions are del-
egated. Both types of delegation are important since they allow users to se-
lectively delegate permissions such that no more permission than necessary
is delegated. This supports the well-known least privilege security principle.

In the subsequent sections, we formalize the role-based delegation model
RDM2000. We then present an implementation of RDM2000 in a law-
enforcement organization.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 409

Fig. 2. RBAC96 model.

3. A FRAMEWORK FOR ROLE-BASED DELEGATION AND REVOCATION

In this section we propose a delegation model called RDM2000. This model
supports role hierarchy and multistep delegation by introducing the delega-
tion relation. Our work is built upon RBAC96 model [Sandhu et al. 1996] and
RBDM0 model [Barka and Sandhu 2000a].

3.1 Basic Elements and System Functions—from RBAC96 and RBDM0

RBAC96 elements and relations are depicted in Figure 2. They include sets of
five basic elements: users U, roles R, permissions P, sessions S, and constraints.
The fundamental definition is that individual users are assigned to roles and
permissions are assigned to roles. A role is a means for naming many-to-many
relationships among individual users and permissions.

A user in this model is a human being, a role is job function or job title, and
permission is an approval of executing an object method (access to one or more
objects, or privileges to carry out a particular task). Although the concept of a
user can be extended to include intelligent autonomous agents, machines, even
networks, we limit a user to a human being in our model for simplicity.

RBAC96 has two relations: user assignment (UA) and permission assignment
(PA) as illustrated in Figure 2. The user assignment is a many-to-many rela-
tion between users and roles. The permission assignment is a many-to-many
relation between permissions and roles. Users are authorized to use the per-
missions of roles to which they are assigned. This arrangement provides great
flexibility and granularity of assigning permissions to roles and users to roles.
There are two sets of users associated with role r:r Original users are those users who are assigned to the role r.r Delegated users are those users who are delegated to the role r.

The same user can be an original user of one role and a delegated user of
another role. Also it is possible for a user to be both an original user and a
delegated user of the same role. For example, if John delegates his role DIR
to Deloris, then Deloris is both an original user (explicitly) and a delegated
user (implicitly) of role PL1 because the role DIR is senior to the role PL1. The
original user assignment (UAO) is a many-to-many user assignment relation
between original users and roles. The delegated user assignment (UAD) is a

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

410 • Longhua Zhang et al.

many-to-many user assignment relation between delegated users and roles.
The function Users O(r) returns set of original users of the role r and Users D(r)
returns set of delegated users of the role r.

A session is a mapping between a user and possibly many roles. For example,
a user may establish a session by activating some subset of assigned roles. A
session is always associated with a single user and each user may establish zero
or more sessions. The function Sessions(u) returns the sessions associated with
a user, Roles(s) returns the roles activated in a single session, and Permissions(s)
returns the permissions in each session.

Role hierarchies are a natural means for structuring roles to reflect an or-
ganization’s lines of authority and responsibility, and are organized in partial
order ≥, so that if x ≥ y then role x inherits the permissions of y . A member of
x is also implicitly a member of y . in such case, x is said to be senior to y . A
partial order is a reflexive, transitive, and antisymmetric relation. Role hierar-
chies provide a powerful and convenient means to enforce the principle of least
privilege since only required permissions to perform a task are assigned to the
role.

We summarize the above discussions as follows.

Definition 1. The following is a list of original RBAC96 and additional
RBDM0 components:

RBAC96 components:r U, R, P, and S are sets of users, roles, permissions, and sessions, respectively.r UA ⊆ U × R is a many-to-many user to role assignment relation.r PA ⊆ P × R is a many-to-many permission to role assignment relation.r RH ⊆ R × R is a partially ordered role hierarchy.r Sessions: U→ 2S is a function that maps a user to a set of sessions.r Roles: S→ 2R is a function that maps a session s to a set of roles.r Permissions: S→ 2P is a function derived from PA mapping each session s to
a set of permissions.

RBDM0 components:r UAO ⊆ U × R is a many-to-many original user to role assignment relation.r UAD ⊆ U × R is a many-to-many delegated user to role assignment relation.r UA = UAO ∪ UAD.r Users: R→ 2U is a function mapping each role to a set of users.
Users(r) = {u| (u, r) ∈ UA}r Users(r) = Users O(r) ∪ Users D(r)
Users O(r) = {u | (∃r ′ ≥ r)(u, r ′) ∈ UAO}
Users D(r) = {u | (∃r ′ ≥ r)(u, r ′) ∈ UAD}

3.2 Role-Based Delegation

The scope of our model is to address user-to-user delegation supporting role
hierarchies. To simplify the discussion of delegation, we assume a user cannot
be delegated to a role if the user is already a member of that role. For example,

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 411

Fig. 3. RDM2000 model.

project leader Deloris with role PL1 cannot be delegated the role PO1 or PC1
since she has already been an implicit member of these roles. Another assump-
tion we made in RDM2000 is that we consider only the regular role delegation
in this paper. Although it is possible and desirable to delegate an administrative
role, it is difficult to control the regular role propagation in such a manner.

We first define a new relation in RDM2000 called delegation relation (DLGT).
It includes sets of three elements: original user assignments UAO, delegated
user assignment UAD, and constraints. The motivation behind this relation is
to address the relationships among different components involved in a delega-
tion. In a user-to-user delegation, there are five components: a delegating user, a
delegating role, a delegated user, a delegated role, and associated constraints.
To simplify our discussion, we only include the first four components in the
representation of a delegation relation in RDM2000. For example, ((Deloris,
PL1), (Cathy, PL1)) means Deloris acting in role PL1 delegates role PL1 to
Cathy. We assume each delegation is associated with zero or more constraints.
A delegation relation is one-to-many relationship on user assignments. The del-
egation relation supports partial delegation in a role hierarchies: a user who
is authorized to delegate a role r can also delegate a role r ′ that is junior to r.
For example, ((Deloris, PL1), (Lewis, PC1)) means Deloris acting in role PL1
delegates a junior role PC1 to Lewis. A delegation relation is one-to-many rela-
tionship on user assignments. It consists of original user delegation (ODLGT)
and delegated user delegation (DDLGT). We will revisit these concepts after we
define delegation tree. Figure 3 illustrates components and their relations in
RDM2000.

RDM2000 has the following components and theses components are formal-
ized from the above discussions.

Definition 2. The following are additional components introduced in the
RDM2000 model:r DLGT ⊆ UA × UA is one-to-many delegation relation. A delegation relation

can be represented by ((u, r), (u′, r ′)) ∈ DLGT, which means the delegating
user u with role r delegated role r ′ to user u′.r ODLGT ⊆ UAO × UAD is an original user delegation relation.r DDLGT ⊆ UAD × UAD is a delegated user delegation relation.r DLGT = ODLGT ∪ DDLGT.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

412 • Longhua Zhang et al.

In some cases, we may need to define whether or not each delegation can
be further delegated and for how many times, or up to the maximum delega-
tion depth. We introduce two types of delegation: single-step delegation and
multistep delegation. Single-step delegation does not allow the delegated role
to be further delegated; multistep delegation allows multiple delegations until
it reaches the maximum delegation depth. The maximum delegation depth is
a natural number defined to impose restriction on the delegation. Single-step
delegation is a special case of multistep delegation with maximum delegation
depth equal to one.

A delegation path (DP) is an ordered list of user assignment relations
generated through multistep delegation. A delegation path always starts from
an original user assignment. We use the following notation to represent a
delegation path.

uao0→ uad1→ · · · → uadi→ · · · → uadn

Delegation paths starting with the same original user assignment can con-
struct a delegation tree. A delegation tree (DT) expresses the delegation paths in
a hierarchical structure. Each node in the tree refers to a user assignment and
each edge to a delegation relation. The layer of a user assignment in the tree
is referred to as the delegation depth. The function Prior maps one delegated
user assignment to the delegating user assignment; function Path returns the
path of a delegated user assignment; and function Depth returns the depth of
the delegation path.

We give the following example to illustrate the concepts of delegation path
and delegation tree. Suppose we have a set of delegation relations as follows:

D1: ((John, DIR), (Cathy, PL1)) ∈ DLGT
D2: ((Cathy, PL1), (Mark, PC1)) ∈ DLGT
D3: ((Cathy, PL1), (Lewis, PC1)) ∈ DLGT
D4: ((John, DIR), (David, PC2)) ∈ DLGT

From above delegations, we can get delegation paths P1, P2, P3, and P4
by applying Path function. Then we can construct a tree from these paths,
as shown in Figure 4. The new components defined in RDM2000 are clearly
illustrated in the delegation tree. For example, each parent–child relation in the
tree is a DLGT; ODLGT is the first delegation in tree, DDLGT are subsequent
delegations; function prior gives prior delegation node; delegation path is the
path originated from root; and delegation depth is the depth of the node in tree.

We summarize the above discussions as follows.

Definition 3. Elements and functions in multistep delegation:r N is a set of natural numbers.r DP ⊆ UA × UA is an ordered list of user assignments representing a delega-
tion path.r DT ⊆ UA × UA is a user assignment hierarchy representing a delegation
tree.r Prior: UA→ UA is a function that maps a user assignment to another sub-
sequent user assignment that forms a delegation relation.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 413

Fig. 4. An example for delegation paths and a delegation tree. D1, D2, D3, and D4 stand for
delegation relations; P1, P2, P3, and P4 denote delegation paths.

Prior(ua) = {ua′ | ua ∈ UAD, (ua′, ua) ∈ DLGT}, where ua = (u, r)
Prior(ua) = {Ø | ua ∈ UAO}r Path: UA→ DP is a function that maps a UA to a delegation path.
Path(ua0) = {uan → · · · → uai → uai−1 · · · → ua0| uai = Prior(uai−1)},
where ua0 = (u, r).r Depth: UA→ N is a function that returns the delegation depth in the dele-

gation path.

3.3 Delegation Authorization

In delegation authorization, our goal is to impose restrictions on which role can
be delegated to whom. We partially adopt the notion of prerequisite condition
from ARBAC97 [Sandhu et al. 1999] to introduce delegation authorization in
RDM2000.

Definition 4. A prerequisite condition CR is a Boolean expression using
the usual “&” (and) and “|” (or) operators on terms of form x and x̄ where x is a
regular role, for example, CR = r1 & r2 | r̄3.

Definition 5. The following relation authorizes user-to-user delegation in
this framework:r can delegate ⊆ R × CR× N

where R, CR, N are sets of roles, prerequisite conditions, and maximum
delegation depth, respectively.

The meaning of (r, cr, n) ∈ can delegate is that a user who is a member
of role r (or a role senior to r) can delegate role r (or a role junior to r) to
any user whose current entitlements in roles satisfy the prerequisite con-
dition cr without exceeding the maximum delegation depth n. For example,
(PL1, PO2, 1) ∈ can delegate, then John can delegate role PC1 to Mark who is
a member of PO2 role, so that (John, PL1, Mark, PC1) ∈DLGT. The meaning of

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

414 • Longhua Zhang et al.

Table I. Example of can delegate(r, cr, n) with Prerequisite Roles

Delegating Prerequisite Max. Depth Candidate Delegated
Role (r) Condition (cr) (n) Role Set
DIR PTO 2 {RE1, P1, PO1, PC1, PL1} ∪

{RE2, P2, PO2, PC2, PL2}
PL1 PLO&PO2 2 {PTO, RE1, P1, PO1, PC1, PL1}
RE1 CSO 1 {RE1}

(r, ∅, n) ∈ can delegate is that a user who is a member of role r (or a role senior
to r) can delegate role r (or a role junior to r) to any other user. Table I shows
examples of can delegate relations.

3.4 Role-Based Revocation

Revocation is an important process that must accompany the delegation. For
example, Cathy delegated role PC1 to Mark; however, if Mark is transferred
to another division of the organization, he should be revoked from the dele-
gated role PC1 immediately. Several different semantics are possible for user
revocation. Hagstrom et al. [2001] categorized revocations into three dimen-
sions in the context of owner-based approach: global and local (propagation),
strong and weak (dominance), and deletion or negative (resilience). Barka and
Sandhu [200b] identified user grant-dependent and grant-independent revo-
cation (grant-dependency). Since negative authorization is not considered in
RDM2000, we articulate user revocation in the following dimensions: grant-
dependency, propagation, and dominance.

Grant-dependency refers to the legitimacy of a user who can revoke a del-
egated role. Grant-dependent (GD) revocation means only the delegating user
can revoke the delegated user from the delegated role. Grant-independent (GI)
revocation means any original user of the delegating role can revoke the user
from the delegated role.

Dominance refers to the effect of a revocation on implicit/explicit role mem-
berships of a user. A strong revocation of a user from a role requires that the
user be removed not only from the explicit membership but also from the im-
plicit memberships of the delegated role. A weak revocation only removes the
user from the delegated role (explicit membership) and leaves other roles intact.
Strong revocation is theoretically equivalent to a series of weak revocations. To
perform strong revocation, the implied weak revocations are authorized based
on revocation policies. However, a strong revocation may have no effect if any
upward weak revocation in the role hierarchy fails [Sandhu et al. 1999].

Propagation refers to the extent of the revocation to other delegated users.
A cascading revocation directly revokes a delegated user assignment in a del-
egation relation and also indirectly revokes a set of subsequent propagated
user assignments. A noncascading revocation only revokes a delegated user
assignment.

Our framework supports all eight types of user revocation categorized by the
above dimensions. The semantics of different revocation types are addressed
as follows. Our examples mainly show grant-dependent revocation for brevity.
Among different types of revocations, weak noncascading grant-dependent

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 415

Fig. 5. An example for weak noncascading revocation.

Fig. 6. An example for strong noncascading revocation.

(WNDR) and weak noncascading grant-independent (WNIR) revocations are
the simplest yet the most basic revocation schemes. They can be used as the
basic building blocks for other types of revocation schemes in our framework.
Suppose the revocation in Figure 5 is weak noncascading, for John to revoke
Cathy from role PL1, it is important to note that only Cathy’s membership of
role PL1 is changed; other role memberships of Cathy and all the delegated
user assignments propagated by Cathy are still valid. If the revoked node is not
a leaf node, noncascading revocation may leave a “hole” in the delegation tree.
A solution might be the revoking user takes over the delegating user’s respon-
sibility. In this example, John takes over the delegating user’s responsibility
from Cathy, and changes all delegation relations: ((Cathy, PL1), (u, r)) ∈ DLGT
to ((John, DIR), (u, r)) ∈DLGT. In this case, John takes over Cathy’s delegating
responsibility for Mark and Lewis.

A strong noncascading GD/GI revocation of (u, r) ∈ UAD can be seen as an
explicit weak noncascading GD/GI revocation of (u, r) combined with a set of
implicit weak noncascading GI revocations of (u, r ′) ∈ UAD where r ′ is a role
senior to r. Suppose we have a delegation tree as shown in Figure 6. For John
to strongly, noncascadingly revoke Cathy from PL1, Cathy is removed not only
from membership of PL1, but also from roles that are senior to PL1, in this
example DIR. We use SNDR and SNIR to indicate strong noncascading GD
revocation and strong noncascading GD revocation, respectively.

A weak cascading GD/GI revocation of (u, r) ∈UAD can be seen as an explicit
weak noncascading GD/GI revocation of (u, r) combined with a set of implicit
weak noncascading GI revocations of (u′, r ′) ∈ UAD where (u′, r ′) is further
propagated by (u, r). Suppose John is attempting to revoke Cathy from role
PL1. Cascading revocation implies that when Cathy is revoked from role PL1,
Mark and Lewis are revoked from PC1 subsequently as shown in Figure 7.
We use WCDR and WCIR to indicate weak cascading GD revocation and weak
cascading GD revocation, respectively.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

416 • Longhua Zhang et al.

Fig. 7. An example for weak cascading revocation.

Fig. 8. An example for strong cascading revocation.

A strong cascading GD/GI revocation of (u, r) can be seen as a combination of
a strong noncascading GD/GI revocation of (u, r) and a weak cascading GD/GI
revocation of (u, r). In Figure 8, for John to strongly, cascadingly revoke Cathy
from PL1, not only Cathy is strongly revoked from membership of PL1, but also
Mark and Lewis are revoked from role PC1. We use SCDR and SCIR to indicate
weak cascading GD revocation and weak cascading GD revocation, respectively.

It is equally important that users understand the semantics of above revoca-
tion schemes, since users themselves determine the scheme that a revocation
actually follows.

3.5 Revocation Authorization

Definition 6. The following relations authorize delegation revocation:r can revokeGD ⊆ Rr can revokeGI ⊆ R

The meaning of (b) ∈ can revokeGD is that only the delegating user who has
current membership in b can revoke a delegated user from the delegated role
that is junior to b. The meaning of (b) ∈ can revokeGI is that any user whose
current membership includes a delegated roleb in the delegation path that is
prior to a delegated user whose current membership includes a delegated role
junior or equal tob, can revoke the delegated user from role b. Tables II and III
show examples of these relations for the delegation tree in Figure 4. (DIR) ∈
can revokeGI means that a user (John) with role DIR prior to a delegated user
(Cathy, Mark, Lewis, David) in a delegation path is authorized to revoke the
delegated user from the delegated role (PL1, PC1, PC2). can revokeGD is the
default setting for a delegating role. If a user can delegate a role, the same user
can also revoke the delegated role.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 417

Table II. Example of can revokeGI

Revoking Candidate Revoked Candidate Revoked
Role Role Set Revoking User Set User Set
DIR {DIR, PL1, PC1, PC2} {John} {Cathy, Mark, Lewis, David}
PL1 {PL1, PC1} {John, Cathy} {Mark, Lewis}

Table III. Example of can revokeGD

Candidate Revoked Candidate Revoked
Revoking Role Role Set Revoking User Set User Set
DIR {DIR, PL1, PC2} {John} {Cathy, David}
PL1 {PC1} {Cathy} {Mark, Lewis}

Certain types of revocation requests may result in a set of related user role
revocations. Any revocation scheme can be constructed through basic revoca-
tion schemes. Thus, the implementation of a revocation actually supports two
types of enforcement: an explicitly enforced revocation (simply called an explicit
revocation) and an implicitly enforced revocation (simply called an implicit re-
vocation). An explicit revocation is directly from the user revocation request.
An implicit revocation is a revocation resulting from a strong revocation or a
cascading revocation.

We introduce two approaches to implement an implicit revocation: the eager
approach and the lazy approach. The eager implementation revokes all ex-
plicit and implicit revocations immediately after the authorization of a revoca-
tion request. For example, in a weak cascading revocation, if Cathy is revoked
from PL1, Mark and Lewis will be revoked from PC1 immediately. This can be
achieved by browsing over all the delegation paths and revoking users from
delegated roles. The eager approach is difficult to implement in a distributed
environment because of the computational complexity. The lazy implementa-
tion adopts a run-time revocation. Only Cathy will be revoked from role PL1
with the authorization of a weak cascading revocation. When Mark activates
the delegated role, system will check the status of each element in the delega-
tion path: since (Cathy, PL1) is no longer valid, the delegation path P2: {(Mark,
PC1), (Cathy, PL1), (John, DIR)} is not allowed. Mark will be finally removed
from PC1. This lazy approach will not lead to timing attacks caused by the
delay since the status of a user assignment is validated when a user activates
the delegated role.

4. THE RULE-BASED POLICY SPECIFICATION LANGUAGE

RDM2000 defines policies that allow regular users to delegate their roles. It
also specifies the policies regarding how delegated roles can be revoked. In this
section we describe a rule-based language to enforce these policies. There are
two reasons to choose a rule-based language: first, the delegation and revocation
relations defined in RDM2000 lead naturally to declarative rules; second, an
individual organization may need local policies to further control delegation and
revocation. A declarative rule-based system allows individual organizations to
easily incorporate such local policies. We emphasize the use of functions. We

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

418 • Longhua Zhang et al.

show how our construction can be used to express delegation and revocation
policies. We demonstrate the enforcement of these polices as well.

4.1 The Language

The main purpose of the rule-based specification language is to specify and en-
force authorizations of delegation and revocation based on the RDM2000 model.
A rule-based language is a declarative language, which binds logic with rules
[Abiteboul and Grumbach 1991]. An advantage is that it is entirely declara-
tive so it is easier for security administrator to define policies. The proposed
language is a rule-based language with a clausal logic.

Definition 7. A clause, also known as a rule, takes the form:

H ← B.

where H stands for rule head and B stands for rule body.

A successful inference of B will trigger H to be true. This provides exactly the
mechanism for authorization specification and enforcement. An authorization
is similar to an assertion. If the condition defined in the rule body is true,
then it will trigger some actions (e.g., authorizations). Thus, the condition of an
authorization policy can be encoded in a rule body; and the authorization can
be encoded in the rule head.

4.2 Functions

The fundamental element of our language is a set of functions. A function has
a name, a set of arguments, and a return value. Function itself can be an ar-
gument of another function. A function returning truth-value is also called a
Boolean function. There are three categories of functions: specification func-
tions, utility functions, and authorization functions, as shown in Tables IV–
VI, respectively. Specification functions express information of the RBAC and
RDM2000 components. We have a set of system functions defined in RBAC96
and RDM2000 models. We map these system functions to specification func-
tions. Utility functions are general-purpose Boolean functions providing sup-
portive functionalities, for example, comparison, aggregation. Authorization
functions define authorization policies and enforcement of these policies. They
further divide into basic authorization functions and derived authorization
functions.

4.3 Basic Authorization Rules

Basic authorization rules take form H←. Bodies of basic authorization rules
are empty, which means they are always true. Basic authorization rules are
predefined security policies and facts specified within RBAC and RDM2000
components.

Rule 1. A user–user delegation authorization rule is a rule of the form:

can delegate(r, cr, n)← .

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 419

Table IV. Specification Functions

RDM2000 System
Mapping Functions Functions Semantics
active(u, r, s) Return true if the user u has role r

activated in a session s.
conflicting(x, y) Return true if x conflicts with y , where x

and y can be users or roles.
delegatable(u, r) Return true if a user u has the authority

to further delegate a role r. This
function always returns true if (u, r) is
an original user assignment.

depth(u, r) Depth: U ∪ R→ N Return the delegation depth of a
(delegated) user assignment.

duration(u, r) Duration: UA→ T duration(u, r) returns the assigned
duration-restriction constraint of the
delegated user assignment (u, r).

expires(t) expires(t) returns true if the duration t
expires.

junior(r, r ′) ≤ Role r is junior to role r ′.
path(u, r) Path: U ∪ R→ DP Return the delegation path of a

(delegated) user assignment (u, r).
prior(u, r) Prior: U ∪ R→ U× R Return the user assignment previous to

(u, r) in the delegation path.
permissions(s) Permissions: S→ 2P Return all activated permissions in a

session.
revoked cascade (u, r) Return true if any one of the user

assignment in the delegation path of
(u, r) was revoked.

revoke stronge (u, r, u′, r ′) Return true if (u′, r ′) was strongly
revoked by (u, r).

roles(s) Roles: S→ 2R Return all activated roles in a session.
senior(r, r ′) ≥ Role r is senior to role r ′.
sessions(u) Sessions: U→ S Map a user to a set of sessions.
users(r) Users: R→ 2U Return all users who are members of

role r.
users o(r) Users O: R→ 2U Return all original users who are

members of role r.
users d (r) Users D: R→ 2U Return all delegated users who are

members of role r.

where r, cr, and n are elements of roles, prerequisite conditions, and maximum
delegation depths respectively.

This rule is the basic user-to-user delegation authorization policy extracted
from can delegate relation in RDM2000. It means that a member of the role r
(or a member of any role that is senior to r) can assign a user whose current
membership satisfies prerequisite condition cr to role r (or a role that is junior
to r) without exceeding the maximum delegation depth n.

Rule 2. A cascading grant-dependent revocation authorization rule is a rule
of the form:

can revokeGD(r)← .

where r is element of roles.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

420 • Longhua Zhang et al.

Table V. Utility Functions

RSPL Functions Return Value Semantics
in(x, y) Truth Value Describe the membership between a and b: that

is, x is a member of y .
equals(x, y) Truth Value Return true if x = y .
lt(x, y) Truth Value Return true if x < y .
not(x) Truth Value not(x) = !x, where x is a Boolean term.

Table VI. Authorization Functions

Basic Authorization Derived Authorization
Functions Functions Semantics

allow(u, r, p, s) Refer to rule 4
der can revoke auto cascade(u, r) Refer to rule 8
der can revoke auto strong(u, r) Refer to rule 9
der can revoke auto expire(u, r, rvk opt) Refer to rule 10

can delegate(r, cr, n) der can delegate(u, r, u′, r ′, dlg opt) Refer to rules 1 and 5
can revokeGD(r) der can revokeGD(u, r, u′, r ′, rvk opt) Refer to rules 2 and 6
can revokeGI(r) der can revokeGI(u, r, u′, r ′, rvk opt) Refer to rules 3 and 7

error(u, r, u′, r ′) Refer to rule 11

This rule is the basic cascading grant-dependent revocation authorization
policy extracted from can revokeGD relation in RDM2000. It means that a mem-
ber of the delegated role r (or a member of a delegated role that is junior to r)
can be revoked membership of a role r only by the delegating user.

Rule 3. A cascading grant-independent revocation authorization rule is a
rule of the form:

can revokeGI(r)← .

where r is element of roles.

This rule is the basic cascading grant-independent delegation revocation pol-
icy extracted from can revokeGI relation in RDM2000. It means that a member
of the delegated role r (or a member of a delegated role that is junior to r) can be
revoked membership of a role r by any user who is prior to him in the delegation
path.

4.4 Authorization Derivation Rules for Enforcing Policies

The basic authorization specifies the policies and facts defined in RDM2000.
Further derivations are needed for authorization and their enforcement. An
authorization derivation rule expresses authorization on an individual user.
The rule body describes an inference logic that consists of basic authorization,
specification and utility functions. The result can be either true (authorized) or
false (denied).

4.4.1 Enforcement of Access Control Policies.
Rule 4. An access control rule is a rule of the form:

allow(u, r, p, s)← active(u, r, s) & in(p, permissions(s))

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 421

where u, r, p, and s are elements of users, roles, permissions, and sessions,
respectively.

This rule implies that permission p is granted a user u with a role r activated
in a session s.

Access control rule says that a user with a role r activated in a session s
will be granted a permission p that is assigned to r, whether r is assigned by
security officer or delegated by another user.

4.4.2 Enforcement of Delegation Policies.
Rule 5. A user-user delegation authorization derivation rule is a rule of the

form:
der can delegate(u, r, u′, r ′, dlg opt)←

active(u, r, s)&
delegatable(u, r)&
can delegate(r ′′, cr, n)&
senior(r, r ′′)&
in(u′, cr)&
junior(r ′, r ′′)&
lt(depth(u, r), n).

where u and u′ are elements of users; r, r ′, and r ′′ are elements of roles; cr and
s are elements of prerequisite condition and sessions respectively; dlg opt is a
Boolean term, if it is true, then delegatable (u′, r ′) is true. This argument is
used as Boolean control of delegation propagation.

This rule means that a user u with a membership of a role r senior to
r ′′activated in session s can delegate a user u′ whose current role member-
ship satisfies prerequisite condition cr to role r ′ (r ′ is junior to role r ′′) without
exceeding the maximum delegation depth n.

For example, the security officer specifies the following delegation policies
addressed in Table I:

Policy 1: can delegate(DIR, PTO, 2)← .

Policy 2: can delegate(PL1, PLO&PO2, 2)← .

Policy 3: can delegate(RE1, CSO, 1)← .

John needs to delegate a role PL1 to Cathy with further delegation option
(we assume that a policy engine optimizes the selection of possible policies for
a derivation rule based on the delegation request, in this case, policy 1).

To deduce der can delegate(John, DIR, Cathy, PL1, true),
deduce active(John, DIR, s) = true and
deduce can delegate(DIR, PTO, 2) = true and
deduce delegatable(John, DIR) = true and
deduce senior(DIR, DIR) = true and
. . .

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

422 • Longhua Zhang et al.

to deduce in(depth(John, DIR), 2),
deduce depth(John, DIR) = 0
deduce in(0, 2) = true.

true.

The delegation is authorized. If the deduction results for all available policies
are false, then this delegation request is denied. For example, delegation from
Gail to Cathy with role PL2 is denied since there is not a policy for this case. Note
that there may be more than one basic authorization rules that can be applied to
infer the derivation rule. The policy engine only needs one of them to authorize
the delegation request and the choice depends on the rule-optimizing algorithm.
The enforcement of a delegation is straightforward. After authorization, the
delegated user is assigned to the delegated role.

4.4.3 Enforcement of Revocation Policies.
Rule 6. A grant-dependent revocation authorization derivation rule is a rule

of the form:

der can revokeGD(u, r, u′, r ′, rvk opt)←
active(u, r, s)&
can revokeGD(r ′)&
equals((u, r), prior(u′, r ′)).

where u and u are elements of users, u 6= u′; r and r ′ are elements of roles.
The rvk opt indicates the revocation scheme, which can be one of strong cas-
cading grant-dependent (SCDR), weak cascading grant-dependent (WCDR),
strong noncascading grant-dependent (SNDR), and weak noncascading grant-
dependent (WNDR).

This rule means that a user u′ can be revoked from a role r ′ by the delegating
user u with a role r activated where (u, r) = prior(u′, r ′).

Rule 7. A grant-independent revocation authorization derivation rule is a
rule of the form:

der can revokeGI(u, r, u′, r ′, rvk opt)←
active(u, r, s)&
can revokeGI(r ′)&
in((u′′, r ′′), path(u′, r ′)).

where u and u′ are elements of users, u 6= du; r and dr are elements of role
respectively. The rvk opt indicates the revocation scheme which can be any
one of strong cascading (SCIR), weak cascading (WCIR), strong noncascading
(SNIR), and weak noncascading (WNIR).

This rule means that a user u′ can be revoked from a role r ′ by any original
user u.

Rule 8. An automatic cascading revocation authorization rule is rule of the

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 423

form:
der can revoke auto cascade(u, r)←

in((u′, r ′), path(u, r))&
revoked cascade(u′′, r ′′, u′, r ′).

where u, u′ are elements of users; r, r ′ are elements of roles.

This rule means if any of user role assignment (u′, r ′) in the delegation path
path(u, r) is revoked cascadingly, a user u is revoked from a role r.

Rule 9. An automatic strong revocation authorization rule is rule of the
form:

der can revoke auto strong(u, r)←
revoked strong(u′′, r ′′, u, r ′)&
senior(r, r ′)&
der can revokeGI(u′′, r ′′, u, r ′, WNIR).

where u, u′′ are elements of users, r, r ′, and r ′′ are elements of roles.

This rule means if user role assignment (u, r ′) is strongly revoked by a user
u′′ with a role r ′′, then u is weakly revoked from any role r ′ which is senior to r
by the same user u′′.

In RDM2000, we assume each delegation relation may have a duration
constraint associated with it. Once the assigned duration expires, the dele-
gation is automatically revoked. If there is no duration specified for a dele-
gation, the delegation is permanent unless another user revokes it. When a
user assigns duration to a delegation, the user needs to explicitly specify the
scheme that the duration–restriction revocation will follow as well. So actu-
ally duration–restriction revocation is a scheduled user revocation. Revoca-
tion using duration constraint was proposed by Barka and Sandhu [2000a,
2000b]. Duration–restriction revocation is a simple self-triggered process that
ensures the automatic revocation of role membership. It is extremely useful
when the attached duration is a small time period or predetermined. It can
eliminate the overhead of administrative effort of manually revoking a dele-
gation. However, duration–restriction by itself is not enough to ensure secu-
rity; and the time period must be set carefully since it might be overset or
underset.

Rule 10. An automatic duration–restriction triggered revocation authoriza-
tion rule is rule of the form:

der can revoke auto expire(u, r, rvk opt)← expires(duration(u, r)).

where u is element of users, r is element of roles.

This rule means if the duration assignment to user assignment (u, r) is ex-
pired, (u, r) will be revoked.

Derivation rules 6 and 7 authorize user revocation requests. Derivation
rules 8 and 9 authorize revocations resulting from cascading or strong revoca-
tions. Derivation rule 10 authorizes duration–restriction triggered revocation.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

424 • Longhua Zhang et al.

The enforcement of an authorized revocation could be quite complicated in our
framework.

In a revocation enforcement process, the authorization of a cascading revoca-
tion subsequently authorizes a set of automatic weak noncascading revocations
by applying rule 8; the authorization of a strong revocation subsequently autho-
rizes a set of automatic weak noncascading revocations by applying rule 9; and
if necessary the enforcement of a weak noncascading revocation will coalesce a
set of delegation path.

4.4.4 Enforcement of Role-Based Constraints. Constraints are an impor-
tant component of RBAC since it can be used for laying out higher-level or-
ganizational policies in role-based systems [Ahn and Sandhu 2000; Sandhu et
al. 1996]. Major examples include incompatible role assignment, separation of
duties (SOD), and Chinese wall policy. We mainly focus on those constraints
that impose restrictions on delegations.

Representation of constraints is critical. In a centralized role-based system,
the effect of constraints can be achieved by judicious care on the part of the
security officer(s). However, in a distributed system, there must be a way to
represent these constraints consistently. Rules are extremely suited for con-
straints specification and enforcement. We introduce an integrity rule to repre-
sent constraints.

Rule 11. An integrity rule is a rule of the form:

error(u, r, u′, r ′)← B.

An integrity rule takes a delegation relation as its arguments, and checks
if the proposed delegation violates security policies. For example, a static sep-
aration of duty (SSOD)/incompatible roles assignment constraint states that
no user can be assigned to two conflicting roles (r1, r2). This constraint can be
represented as

error(u, r, u′, r ′)← conflicting(r ′, r ′′) & in(u′, r ′′).

This rule says if user u is already a member of role r ′′, then u cannot be
delegated the conflicting role r ′. Suppose PO1 and CSO are incompatible roles.
The delegation of role PC1 from Deloris to Kevin will be denied even if the del-
egation authorization derivation rule is true, since the integrity rule indicates
that this delegation violates the SSOD constraint.

error(Deloris, PL1, Kevin, PO1)← conflicting(PO1, CSO) & in(Kevin, CSO).

Similarly, we can define and enforce other role-based constraints.
An incompatible users constraint states that two conflicting users (u1, u2)

cannot be assigned to the same role. This constraint can be represented as

error(u, r, u′, r ′)← conflicting(u′, u′′) & in(u′′, r ′).

Integrity rules are extremely suited for constraint specification and enforce-
ment. A constraint is similar to an assertion. If the condition defined in the
constraint is true, then it will trigger some actions (restrictions). However, to
fully address the constraint issue is beyond the scope of this paper. It is our

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 425

future work to explore the enforcement of role-based constraints through dif-
ferent rules.

5. SYSTEM DESIGN

As part of our on-going research efforts, we have implemented a prototype of the
proposed delegation framework for law-enforcement agencies to demonstrate
the feasibility of the proposed delegation model. Our prototype is a web-based
application supporting secure role-based delegation and revocation. In this sec-
tion, we describe the design issues that we consider and introduce the system
architecture in general. We also demonstrate the delegation and revocation
procedures in cpops.

5.1 Design Issues

The working environments for law-enforcement agencies are highly distributed;
they can be at any place where a problem occurs. So are the systems that process
the crime-related information. Delegation is one of the most important security
features in such systems. It enables officers to share authority to other indi-
viduals for collaboration purposes. This eliminates the participation of security
administrators and empowers the user population. RDM2000 model provides
us with several alternatives to implement delegation and revocation in such a
critical environment. We first address the design issues.

5.1.1 Resource Definition. As with all software development, good design
and engineering practices are important for information and system security.
This point is particularly true for security-critical software such as CPOPS.
Rather than thinking of delegation and revocation as an add-on feature to
CPOPS, it was designed into the system from its early stages of requirements
gathering through development.

CPOPS is a secure web-based application that enables police officers to ac-
cess problem-oriented policing projects’ information at real time. We selected
CodeFusion (CF) 4.0 [Forta 1998, 2001] as the development platform since it
provides a full range of database interaction functions to create dynamic, data-
driven web pages. In CPOPS, objects of access control in the system are mainly
views of project tables; operations are access methods to these views, for exam-
ple, select, insert, update, and delete. Permissions represent access methods to
one or more views, for example, a link that can be viewed by users in certain
roles, a code segment that displays records of a specific table, a report that
members of some role can update while others can only read, and so on. One
design decision we made for securing CPOPS is the definition of the protected
resources. Instead of laying protection directly on views of CPOPS tables, we
abstract a protected resource as any block of code that needs to be secure. Most
of these code blocks actually define access methods to views of tables. Thus,
permission for a role to access tables is simplified as the privilege to execute
the code blocks. There are several reasons we made this abstraction. First, the
protected resources are defined at a higher degree of logical abstraction than
physical data and views, so they are easily understood and efficiently managed

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

426 • Longhua Zhang et al.

by developers. Second, since the code blocks can be predefined reusable compo-
nents, it can hide the implementation details of permissions from application
developers. And lastly, one of the most powerful features of the CF security
framework is the capability to secure individual sections of code at runtime
[Forta 1998]. This feature allows developers to control access to resources on a
user-by-user basis. We extend this feature to support role-based access control.
This feature ensures that only users with certain roles are allowed to request
delegation and revocation.

5.1.2 Delegation Administration . Two views of delegation administration
were summarized in Linn and Nyström [1999]: administrative-directed dele-
gation and user-directed delegation. In administrative-directed delegation, an
administrative infrastructure outside the direct control of a user mediates del-
egation, for example, a delegation agent must mediate all delegations. In user-
directed delegation, any user may mediate delegation to resources under the
user’s control. In both situations it is necessary to enforce predefined delegation
policies to prevent privilege abuses by individual users.

Although RDM2000 can be implemented as either user-directed or
administrative-directed delegation, our implementation takes the latter ap-
proach. That is, an administrative service outside the direct control of a user
mediates delegation and revocation. Users initiate delegation and revocation
by sending requests to the administrative infrastructure, then the adminis-
trative service component processes the inquiries. The administrative-directed
delegation has several advantages. One advantage is that it is easy to specify
and modify delegation and revocation policies. Since the mediation of delega-
tion and revocation is centralized, the specification and modification of policies
need to be done only once. Another advantage is that it is easy to keep the
records of all delegations and revocations in the role-based system for auditing.
However, the cost of handling delegation requests for such a centralized server
may be rather expensive. Another concern is how to handle the emergency if
the server is not available since CPOPS requires providing service continu-
ously. To address these problems, we may need additional server(s) to increase
the throughput and availability. In this paper, we choose the administratively
directed approach for brevity.

Another design decision for administration is how to impose restriction on
multistep delegation. As we mentioned before, delegation paths that start from
the same original user assignment will form a user assignment hierarchy called
delegation tree. To impose restrictions on such a hierarchy, decisions must be
made to limit the depth as well as the width of the delegation tree. There are
three solutions to control depth of a delegation: no control, Boolean control, and
integer control [Ellison et al. 1999]. Using no control imposes no restriction on
role proliferation. Boolean control can impose restriction on the depth as well
as the width of the delegation tree; the delegating user decides whether or not
the delegated user can further delegate the delegated role. However, the role
proliferation depends totally on users themselves using the Boolean approach.
There is no high level restriction, say a policy, to limit the maximum depth
of a delegation. Using integer control can limit the maximum depth, but the

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 427

Fig. 9. Overview of system architecture.

drawback is that it has no control on the width of the delegation tree, so it is not
a tight control on role proliferation. We choose integer control at a high level
(delegation policy) to restrict the maximum depth, as well as Boolean control
at a low level (each delegation) to restrict the width of a delegation.

5.2 System Architecture for Delegation and Revocation in CPOPS

In this section, we describe the system architecture in general to demonstrate
the feasibility of the proposed delegation model and provide secure protocols
for managing delegation and revocation.

RDM2000 extends existing RBAC models. It is necessary to implement RBAC
components first. The mechanism of applying RBAC on the web has been dis-
cussed in several papers [Bhamidipati and Sandhu 2000; Ferraiolo et al. 1999;
Linn and Nyström 1999]. Our prototype is implemented on Windows NT with
Internet information server (IIS) and CF application server. It is important to
note that the web server and the application server have the responsibility of
authenticating user identification information and providing confidential data
transmission through secure socket layer (SSL) connection.

Since delegation and revocation services are only part of a security infras-
tructure, we choose a modular approach to our architecture that allows the
delegation and revocation service to work with current and future authentica-
tion and access control services. The modularity enables future enhancements
of our approach. An overview of the architecture is shown in Figure 9. It con-
sists of a front-end web server, a business application layer providing a number
of services which include delegation/revocation service, role service, and so on,
and back-end databases for the problem-oriented policing projects as well as
RBAC and RDM2000 components to be managed. We briefly describe these
components as follows:

Web server is the application entry point. It has the responsibility of providing
confidential data transmission through secure socket layer (SSL) connection.
CF application server implements the business application logic through CF
tags that are component-based software for accessing databases and providing

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

428 • Longhua Zhang et al.

custom-developed business logic. We implemented three services in the appli-
cation server: authentication and access control service, role service and dele-
gation/revocation service.

Role service is a façade for other services (e.g., delegation/revocation service,
authentication and access control service) to interact with the RBAC database.
It provides methods to create, retrieve, and update database elements, for ex-
ample, user credentials, role memberships, associated permissions, delegation
relations, and so on. These elements are created and maintained using a set
of graphical administration tools. These tools can also be used to maintain the
integrity of database elements by checking and enforcing integrity rules. In
this paper, we provide administration tools for managing RDM2000 elements,
for example, authorization rules, delegation relations, and so on. The adminis-
tration tools for RBAC components are beyond the scope of this paper. We can
simply adopt an existing tool for that purpose such as Ferraiolo et al. [1999].
Delegation/revocation service implements RDM2000 as an administrative ser-
vice, which authorizes and processes delegation/revocation requests. The core
of the service is a rule-processing engine, which is used to decide if a delega-
tion/revocation request can be authorized. The rule engine is an implementation
of the rule-based policy language that provides an environment in which the
basic authorization rules and other credentials can cooperate to produce a proof
that the request complies with the authorization policies (or fail to produce such
a proof). Rule processing is as follows: the rule engine accepts facts (user’s role
memberships and other credentials) and basic authorization rules as a set of
axioms, and the user’s request as a conjectured theorem; then it tries to prove
this theorem, that is, to demonstrate that it can be logically derived from those
axioms.

The delegation/revocation service is supported by Authentication and access
control services. The authentication service is used to authenticate users during
their initial sign-on and supply them with an initial set of credentials. Access
control service makes access control decisions based on information supplied
by role service. In CPOPS, the authentication and access control services are
provided by CF tags. One reason that CF application server was chosen as
the deployment environment of CPOPS is for its advanced security features.
ColdFusion provides authentication tags and functions to determine the au-
thentication status and the authority of each user. It allows the definition of a
group of users from an LDAP server or a Windows NT domain. Although user
groups are different from roles, as they do not have assigned permissions, they
can be configured to implement roles.

The project database stores information related to problem-oriented polic-
ing projects, such as tables of investigations, crime analysis, police reports,
project assessments, and so on. Although we abstract the protected resources
in CPOPS as code segments, ultimately, objects of access control in the system
are views of project tables. The RBAC database is an implementation of the
RBAC96 and RDM2000 components. It stores tables specifying RBAC96 and
RDM2000 components, such as users, roles, permissions, constraints, user as-
signments, permission assignments, role hierarchies, delegation tree, basic del-
egation/revocation rules, and so on. For example, the delegation tree is stored

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 429

Table VII. CPOPS components

Web servers, CF application
server and CF tags

Web server is the application entry point. It has the
responsibility of authenticating users and providing
confidential data transmission through secure socket
layer (SSL) connection together with CF application
server which implements the business application
logic through CF tags that are component-based
software for accessing databases and providing
custom-developed business logic.

Authentication and access
control services

Authenticates users during their initial sign-on,
supplies them with an initial set of credentials and
makes access control decisions.

Role service Acts as a façade for other services. It provides methods
to create, retrieve, and update elements for RBAC
database.

Delegation/revocation service Authorizes and enforces delegation and revocation
requests from users. The core of
delegation/revocation service is a rule engine to
optimize rule search, interpret rules and authorize
user requests.

RBAC and project database RBAC database stores tables specifying RBAC96 and
RDM2000 components, such as users, roles,
permissions, constraints, user assignment,
permission assignment, role hierarchy,
delegation/revocation rules, and so on. Project
database stores tables of investigations, crime
analysis, police reports, project assessments, and so
on.

as table represented by the one-to-many relationships among the delegating
user assignment and the delegated user assignments.

The descriptions of these main components are summarized in Table VII.

5.3 Delegation and Revocation Procedures

In this section, we describe how secure delegation and revocation are managed
in our framework as shown in Figure 10.

1. A user initiates a session by connecting to the web server.
2. A SSL handshake is performed, which results in the link encryption between

the browser and the web server through a session key.
3. The user is authenticated through username/password by the authentica-

tion service. If the user is successfully authenticated, role service will re-
trieve the user’s role memberships (from both original user assignment and
delegated user assignment) and display a list of assigned roles to the user.

4. The user selects role or role set to activate in current session. The role ser-
vice will consult delegation/revocation service to verify that the user’s role
membership has not been revoked by cascading revocation. If the user’s
role membership is successfully verified, a RBAC session is then established.
The user can then request permission to access protected resources. We omit
the access control procedure deliberately in the diagram, as it is irrelevant

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

430 • Longhua Zhang et al.

Fig. 10. Secure delegation/revocation data flow.

to our delegation framework. If the user needs to delegate or revoke a role,
he proceeds to next step.

5. The user composes a delegation/revocation request. In the case of dele-
gation, based on user’s current active role, the user may choose the role
or a junior role as well as the delegated user. He can also define an op-
tional duration–restriction constraint for the delegation. A delegation re-
quest has the format: request(type=DLGT, project, delegating user, delegat-
ing role, delegated user, delegated role, option, duration, revoke option). In
the case of revocation, a user needs to select the proper revocation scheme,
for example, weak noncascading GD revocation (WNDR), weak cascad-
ing GD revocation (WCDR), and so on. A revocation request has the for-
mat: request(type=RVK, project, revoking user, revoking role, revoked user,
revoked role, option, null, null). Requests are sent to the CF application
server. The delegation/revocation service is then invoked.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 431

6. The delegated user’s role membership information is retrieved from RBAC
through role service as well as other RBAC specifications (role hierarchies,
constraints, and so on) and basic authorization rules if necessary. The prepro-
cessor transforms rules, users’ credentials, and other RBAC/RDM2000 facts
into a logic program. A query is created based on the delegation request.
A delegation query has the format: der can delegate(deleating user, dele-
gating role, delegated user, delegated role, option), which implements the
user–user delegation authorization derivation rule. A revocation query has
several formats that implement revocation authorization derivation rules,
for example, der can revokeGD(revoking user, revoking role, revoked user,
revoked role, option). The output and user’s request (a query) is then fed
to the inference engine for authorization.

7. If the request is authorized, the postprocessor in the delegation/revocation
service updates the database for the RBAC and the RDM2000 elements. If
the request is a delegation, a delegated user role assignment is created and
the delegation tree is updated. Next time when the delegated user logs in, he
will see the delegated role displayed in the list of roles assigned to him. If the
request is a revocation, the delegated user role assignment is removed from
the delegated user’s role list. If the user selects strong revocation in Step 5,
delegation/revocation service will repeat Step 6 and 7 for all roles that are
delegated to the delegated user senior to the role in the revocation request.
If the delegation is a cascading revocation, the delegation/revocation service
changes the status of the delegated user role assignment in the delegation
tree. The transaction is then recorded in event logs.

8. Both users in this transaction are notified. If the delegated user is not online,
he will be notified next time when he logs in to the CPOPS.

Note that Step 3 to authenticate the user using username/password is op-
tional since the web server can accept client certificates as a means for user
authentication. In addition, CPOPS uses Oracle 8i as its database Server. The
connection between CF application server and Oracle database server is se-
cured by IIOP/SSL. Although we demonstrated the functionality of delegation
and revocation using the CPOPS example in this section, the procedures are
not limited to a particular application.

6. SYSTEM IMPLEMENTATION

Our proof-of-concept has two parts: the implementation of RDM2000 and the
implementation of the rule-based policy language. We implement them as the
delegation/revocation service: users’ delegation/revocation requests are inter-
preted, authorized, and processed by the service; it creates RDM2000 elements
based upon users’ requests and maintains the integrity of the database by
checking and enforcing consistency rules [Ferraiolo et al. 1999; Zhang et al.
2001, 2002]. The core of this service is a rule engine. Currently, we implement
the rule inference engine by extending SWI-prolog [wielemaker] using its C++
interface. The rule engine has three functional units: a preprocessor, an in-
ference engine, and a postprocessor. The preprocessor transforms rules, users’
credentials, and other facts into a logic program. It is defined as

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

432 • Longhua Zhang et al.

r preprocess(request : class, roleservice : class)
It takes a user request object and a role service object as input and returns a
Prolog program.

The output and user’s request (a query) is then fed to the inference engine
for answer. The inference engine is defined asr inference(request : class, program : string)

It takes a user request object and a Prolog program as input and returns the
result of the program.

The postprocessor saves the result of an authorized delegation or revocation
to the RBAC database and logs the transaction. It is defined asr postprocess(request : class, result : boolean, roleservice : class)

It takes a user request object, the inferred result and a role service object as
input.

A functional definition of the rule engine isr postprocess(request : class, inference(request : string, preprocess(request :
string, roleservice : class)), roleservice : class)

Note that the request data can be either delegation request or revoca-
tion request. It is handled through polymorphism. The definition of other re-
lated classes, CRoleService and CDelegationRevocationService, is illustrated in
Appendix A.

We have developed graphic user interfaces (GUIs) to handle delegation and
revocation requests in CPOPS. One example GUI for lead officers to manage
project user role memberships is illustrated in Figure 11. In this example, an
officer, Deloris Alston, acting as lead officer (LED) in project test, delegates one
junior role participant officer (PRT) in the project to Daniel Cunius, a reserve
officer (RES) from distinct C-1 who is assigned to her team temporarily (for
30 days). The delegation request form is shown in bottom-left part of Figure 11.
The bottom left part of the diagram shows roles and users in the test project.
Deloris Alston is in the project lead officer role. The bottom right part is a del-
egation request form. It consists of the delegated user, delegated role, further
delegation option, and the optional duration constraint. Based on the form, a
delegation request is created:

request : type=DLGT, project=test, delegating user=Deloris Alston,
delegating role=PL1, delegated user=Daniel Cunius, delegated role=PO1,
option=TRUE, duration=30, revoke option=WNDR.

Note that a revocation scheme needs to be specified for the duration–restriction
triggered revocation. The delegation request is then forwarded to the delega-
tion/revocation service, shown as Step 5 to Step 8 in Figure 10. The rule engine
will process the request and different function calls in class CDelegationRevo-
cationService are invoked, for example, PreProcess, Inference, PostProcess, and
so on. The delegation request and rule engine log for this example are presented
in Appendix B.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 433

Fig. 11. GUI for delegation request in CPOPS.

A more complicated RDM2000 management interface is illustrated in
Figure 12. Only directors and project leaders have access to the RDM2000
manager. This diagram clearly demonstrates the delegation trees. The tree
view contains the history of the delegations/revocations and their status in the
test project. The history is categorized into four folders: authorized delegation
folder containing the delegation trees, authorized revocation folder, pending
requests folder, and denied requests folder. The authorized delegation folder
consists of not only the directly authorized delegations but also those further
propagated delegated user assignments by multistep delegations. It can see
clearly the RDM2000 constructs in these trees. Each node in the authorized
delegation tree refers to a user assignment and each edge to a delegation rela-
tion. The depth of a user assignment in the tree is referred to as the delegation
depth. Deloris can select the delegated user-role assignment to view the de-
tailed information of each delegation, as shown in the right of the diagram. The
bottom right includes a revocation form. After selecting a delegated user-role
assignment, Deloris can select a revocation scheme and request to revoke the
delegated user-role assignment. For example, if she selects weak noncascading
GD revocation, a revocation request is created as

request : type=RVK, project=test, revoking user= Deloris Alston,
revoking role=PL1, revoked user=Daniel Cunius, revoked role=PO1,
option=WNDR, null, null).

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

434 • Longhua Zhang et al.

Fig. 12. GUI for RDM2000 management and revocation request in CPOPS.

The benefits of allowing users to administer user-role assignments at some
points will come into the risk of exposing problem-oriented policing project
information to unauthorized people. Although we assume that users can be
trusted to exercise discretion in how they delegate, we cannot simply neglect
the possibilities of security breaches. Designers of secure access control have
traditionally emphasized audit capabilities [Aura 1999]. That is, every action
should be traced back to an entity that can be held responsible for it. CPOPS
has severe audit requirements. This is for both safety and legal reasons. Access
to problem-oriented policing projects should be logged with the user’s name, as
well as date and time; all delegation and revocation actions should be marked on
the audit trail. A security officer can review these access records and audit trails
periodically, so that breaches can be traced and detected. The audit records of
delegation and revocation in above GUI examples are shown in Figure 13. The
diagram shows a list of recorded delegation/revocation and other system events.
The detailed information of delegation from Deloris to Daniel can be viewed in
the event viewer dialog.

7. RELATED WORK

Although the concept and McDermott of delegation is not new in authorizations
[Abadi et al. 1993; Aura 1999; Barka and Sandhu 2000a; Gasser and McDermott

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 435

Fig. 13. Event logs in CPOPS.

1990; Gladney 1997; Li et al. 1999], role-based delegation received atten-
tion only recently [Barka and Sandhu 2000a, 2000b; Linn and Nyström 1999;
Zhang et al. 2001, 2002]. Delegation is the main mechanism for access rights
management in new distributed discretionary access control [Aura 1999]. In
their approach, the principal entities are the cryptographic keys and delega-
tion of access rights is signed with public key cryptography. With a certificate,
one cryptographic key delegates some of its authority to another key. The main
advantage of certificates lies in decentralization. However, their approach is a
form of discretionary access control. For example, separation of duty policies
cannot be expressed with only certificates. They need some mechanism to main-
tain the previously granted rights and the histories must be updated in real
time when new certificates are issued. Delegation is also an important concept
in decentralized trust management [Blaze et al. 1996, 1999; Li 1999, 2000].
Trust management deals with authorization in highly distributed systems, for
example, the Internet. Other researchers have investigated the problem of del-
egation between machine to machine and human to machine [Abadi et al. 1993;
Gasser and McDermott 1990; Gladney 1997]. Some of these delegation models
had included the role concept. But they considered roles as a special kind of ac-
cess rights that are same as permissions. Many important role-based concepts,
for example, role hierarchies, constraints, were not addressed.

A work closely related to ours is RBDM0 (role-based delegation model zero)
proposed by Barka and Sandhu (2000a). Their work was cast within RBAC0, the
simplest form of RBAC96. RDBM0 is a simple delegation model supporting only

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

436 • Longhua Zhang et al.

flat roles and single step delegation. They distinguished the delegated user as-
signment (UAD) from original user assignment (UAO). UAO is an original user
to role assignment relation, while UAD is a delegated user to role assignment.
Unfortunately, RBDM0 failed to formalize the relationships among UAO and
UAD. Thus they did not give the definition of role-based delegation relation,
which is a critical notion to the delegation model. Barka and Sandhu also dis-
cussed some advanced features of RBDM0, for example, grant-dependent re-
vocation, two-step delegation, and so on. They mentioned possibility to extend
RBDM0 to support role hierarchies. However, without defining the delegation
relation, one cannot formalize these features. The lack of formality restricts
the applicability of RBDM0 in practice. Barka and Sandhu (2000b) identified
some critical role-based delegation features such as delegation with hierarchi-
cal roles, partial delegation, multistep delegation, temporary delegation and
different revocation schemes. They reduced the large number of possible cases
to a few cases that can be useful in practice. Moreover, their focus is on the the-
oretical aspect of delegation framework without any implementation concern.
A major difference between our work and theirs is that we not only give the for-
mal definitions of most useful delegation features but also illustrate how they
can be applied in current role-based systems. In Hayton et al. [1998] and Yao
et al. [2001], a role-based access control architecture, which is designed to facil-
itate access control in distributed systems, is introduced. Central to the OASIS
model is the idea of credential-based role activation. They defined the notion of
appointment so that a user may issue an appointment certificate for privilege
propagation. Even though they claimed that delegation could be viewed as a
special case of appointment, some important delegation features such as dele-
gation tree, partial delegation, delegation revocation, and so on have not been
addressed in their work. In addition, the appointment model lacks a notion of
role hierarchy, which is an essential component of RBAC. Our work explored
those issues including totality of delegation and delegation relation.

In ARBAC97, Sandhu et al. [1999] developed URA97 for security officers to
handle the user assignment. In our approach [Zhang et al. 2001, 2002], the
delegation from one user to another is actually assigning the delegated role to
a user. Thus, the delegating user needs to perform user assignment too. It is
necessary to differentiate between user assignment and delegation. In a user
assignment, the security officer must activate the administrative role; while in
user delegation, the delegating user activates his/her regular role. Although it
is possible to delegate an administrative role, we only consider the regular role
delegation in this paper.

A number of researchers have looked at the semantics of authorization, del-
egation, and revocation. Abadi et al. [1993] provided explicit support of role
authorizations for users. In their approach, roles are used to restrict users’ priv-
ileges for particular execution. However, as a language for authentication and
access control, this approach is rather limited. They have included delegation
concept in their work, but there is no multistep delegation control mechanism—
every delegation can be freely redelegated. Li et al. [1999] proposed delegation
logic (DL) for authorization in large-scale, open, distributed systems. Their
focus is to develop a trust-management language to represent policies and

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 437

credentials. In their logic, role-based concepts were not fully adopted; neither
did they address revocation. Hagstrom et al. [2001] categorized revocation in
owner-based framework into different schemes by post conditions. However,
their attempt is not sufficient to model all the revocations required in role-
based delegation, for example, grant-independent and duration-restricted re-
vocations. Jajodia et al. [1997] proposed a logical language called authoriza-
tion specification language (ASL) for expressing authorization. Although ASL
supports multiple access control policies, it is not role-oriented framework. It
cannot specify authorizations in role hierarchies. In addition, their framework
does not address delegation authorization. Unlike ASL, we focus exclusively on
how to specify and enforce policies for authorizing role-based delegation and
revocation using a rule-based language. This kind of language for role-based
delegation has not been studied in the literature.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a rule-based framework for role-based del-
egation called RDM2000. We introduced rule-based specification language to
specify and enforce policies. A proof-of-concept prototype implementation of the
proposed framework was described. This web-based tool for law-enforcement
agencies on a distributed environment supports reliable delegation and revo-
cation. Major contributions of this work include the identification of delega-
tion relation, comprehensive delegation model, systematic role-based delega-
tion policy specification using rule-based language that has not been addressed
in the literature, role delegation in role hierarchy and multistep delegation.
We demonstrate the feasibility of the proposed framework and provide secure
protocols for managing delegations through a proof-of-concept prototype imple-
mentation of RDM2000 in CPOPS.

There are many challenges that remain to be explored. A delegating user
may need to delegate a role to all members of another role at the same time.
For example, project lead officer Cathy may want to delegate role PC1 to all par-
ticipant officers in her team. This type of delegation is more effective if we adopt
a group-based delegation. We only consider deletion of regular roles in this pa-
per; we need to explore administrative role delegation in the future. Another
issue is that how do original role assignment changes impact delegations. For
example, what are the consequences to the delegation tree if the original user
role assignment is revoked? In addition, we are now experimenting with repre-
senting rules with XML-based languages. The future work would embrace the
extension of RDM2000 model to incorporate these challenges and enhancement
of the rule-based policy language.

APPENDIX A

class CRoleService {
public:

// @cmember Retrieves the roles assigned to a user.
virtual CTypedPtrArray<CObArray,CRole*>* GetUserRoleAssignmentList

(CString lpszName) = 0;

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

438 • Longhua Zhang et al.

// @cmember Retrieves the permissions assigned to a role.
virtual CTypedPtrArray<CObArray,CPermission*>*

GetPermissionRoleAssignmentList(CString lpszName) = 0;
// @cmember Retrieves the permissions assigned to a role.

virtual CTypedPtrArray<CObArray,CRole*>* GetActivateRoles() = 0;
// @cmember Retrieves all immediate senior roles to a role.

virtual CTypedPtrArray<CObArray,CRole*>* GetSenior Roles(CRole*
pRole) = 0;

// @cmember Retrieves all immediate junior roles to a role.
virtual CTypedPtrArray<CObArray,CRole*>* GetJunior Roles(CRole*

pRole) = 0;
//@cmember Retrieves all conflicting roles to a role.

virtual CTypedPtrArray<CObArray,CRole*>* GetConflictRoles(CRole*
pRole) = 0;

//@cmember Retrieves all conflicting user to a user.
virtual CTypedPtrArray<CObArray,CRole*>* GetConflictUsers(CString

lpszName) = 0;
//@cmember Assign role to a user.

virtual void Assignr(CString lpszName, CRole* pRole) = 0;
.

};
class CDelegationRevocationService {
public:

//@cmember PreProcess.
virtual CString PreProcess(CString request, CRoleService* pService) = 0;
//@cmember Inference.

virtual BOOL Inference(CString request, CString program) = 0;
//@cmember PostProcess.

virtual void PostProcess(CString request, CString program) = 0;
//@cmember Retrieves delegation depth.

virtual int GetDelegationDepth(CRole* pRole) = 0;
//@cmember Retrieves delegation rules.

virtual CTypedPtrArray<CObArray,CRule*>* GetDelegationRule(CRole*
pRole) = 0;

//@cmember Retrieves revocation rules.
virtual CTypedPtrArray<CObArray,CRule*>* GetRevocationRule(CRole*

pRole) = 0;
//@cmember Validate cascading revocation.

virtual BOOL ValidateCascadeRevocation(CString lpszName, CRole*
pRole) = 0;

//@cmember Revoke.
virtual void Revoke(CString lpszName, CRole* pRole, CRoleService*

pService) = 0;
//@cmember Delegate.

virtual void Delegate(CString lpszName, CRole* pRole, CRoleService*
pService) = 0;

};
ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 439

APPENDIX B
%% Delegation Engine Log
%% Log ID: 82011
%% Date: 12/24/01
%% Time: 4:30:31 PM
%% From: Deloris Alston
%% Request: Type=“DLGT”

Project=“test”
From=“Deloris Alston”

ActiveRole=“PL1”
To=“Daniel Cunius”

DelgatedRole=“PO1”
opt=“TRUE” duration=“30”

rvk=“WNDR”
%% Preprocessing Output - Prolog

Program
%% Template applies to all

delegation requests
der can delegate(U1, R1, U2, R2,

Opt) :-
active(U1, R1,),
delegatable(U1, R1),
senior(R1, R),
can delegate(R, CR, N),
in(U2, CR),
junior(R2, R),
depth(U1, R1, D),
lt(D, N),
not(error(U1, R1, U2, R2)).

%% basic authorization rules,
optimized by preprosessor

can delegate(pl1, rso, 2).
can delegate(pl1, plo, 1).
. . .

%% representing role hierarchies
parent(dir, pl1).
parent(dir, pl2).
parent(pl1, po1).
. . .

senior(X, X).
senior(X, Y) :-

parent(X, Y).
senior(X, Z) :-

parent(X, Y),
senior(Y, Z).

junior(X, Y) :-
senior(Y, X).

%% current RBAC specifications
for Deloris Alston

active(deloris alston, pl1,).
delegatable(deloris alston, pl1).
depth(deloris alston, pl1, 0).
in(deloris alston, pl1).
%% current RBAC specification for

Daniel Cunius
in(daniel cunius, rso).
%% Support role hierarchy
in(X, Y) :-

in(X, Z),
senior(Z, Y).

%% constraints
%% conflicting roles
conflictingr(rso, cso).
%% conflicting users
conflictingu(daniel cunius,

kevin jones).
%% enforce constraints
error(U1, R1, U2, R2) :-

conflictingr(R2, R),
in(U2, R).

error(U1, R1, U2, R2) :-
conflictingu(U2, U),
in(U, R2).

%% utility functions
lt(X, Y) :-
X<Y.
%%End Program
%% inferring...
der can delegate(deloris alston,

pl1, daniel cunius, po1, true).
%% result: AUTHORIZED.
%% Postprocessing...
%% Update database
. . .

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

440 • Longhua Zhang et al.

ACKNOWLEDGMENTS

We wish to thank Trent Jaeger at IBM T. J. Watson Research Center and the
anonymous referees for their careful reading of the paper, constructive crit-
icisms, and insightful comments. This work was partially supported by the
National Science Foundation.

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in dis-
tributed systems. ACM Trans. Program. Lang. Syst. 15, 4(Sept.), 706–734.

ABITEBOUL, S. AND GRUMBACH, S. 1991. A rule-based language with functions and sets. ACM Trans.
Database Syst. 16, 1–30.

AHN, G. AND SANDHU, R. 2000. Role-based authorization constraints specification. ACM Transac-
tions on Information and System Security 3, 4, ACM (November) 207–226.

AURA, T. 1999. Distributed access-rights management with delegation certificates. Security In-
ternet programming. J. Vitec and C. Jensen Eds. Springer, Berlin, 211–235.

BARKA, E. AND SANDHU, R. 2000. A role-based delegation model and some extensions. In Proceed-
ings of 16th Annual Computer Security Application Conference, Sheraton New Orleans, December
11–15, 2000a.

BARKA, E. AND SANDHU, R. 2000. Framework for role-based delegation model. In Proceedings of
23rd National Information Systems Security Conference, Baltimore, October 16–19, 2000b, 101–
114.

BHAMIDIPATI, V. AND SANDHU, R. 2000. Push Architectures for USER ROLE assignment. In Pro-
ceedings of 23rd National Information Systems Security Conference, Baltimore, October 16–19,
2000, 89–100.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. IEEE Symposium
on Security and Privacy. Oakland, CA. May 1996.

BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. 1999. The role of trust management in
distributed system security. Security Internet Programming. J. Vitec and C. Jensen, eds. Springer,
Berlin, 185–210.

ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLONEN, T. 1999. SPKI Certificate
Theory, RFC2693, http://www.ietf.org/rfc/rfc2693.txt, 1999.

FERRAIOLO, D., BARKLEY, J., AND KUHN, D. R. 1999. A role-based access control model and refer-
ence implementation within a corporate intranet. ACM Transactions on Information and System
Security 2, 1(February), 34–64.

FERRAIOLO, D., CUGINI, J., AND KUHN, D. R. 1995. Role-based access control (RBAC): features and
Motivations. In Proceedings of 11th Annual Computer Security Application Conference. New
Orleans, LA, December 11–15 1995, 241–241.

FORTA, B. (ed), 1998. Nate Weiss. Advanced ColdFusion 4.0 Application Development. MacMillan
Company.

FORTA, B. (ed). 2001. Certified ColdFusion Developer Study Guide. 1st edn. Macromedia Press.
GASSER, M. AND MCDERMOTT, E. 1990. An architecture for practical delegation a distributed sys-

tem. IEEE Computer Society Symposium on Research in Security and Privacy. Oakland, CA, May
7–9, 1990.

GLADNEY, H. M. 1997. Access control for large collections. ACM Transactions on Information
Systems 15, 2(April), 154–194.

HAGSTROM, A., JAJODIA, S., PRESICCE, F. P., AND WIJESEKERA, D. 2001. Revocations—a classification.
In Proceedings of 14th IEEE Computer Security Foundations Workshop, Nova Scotia, Canada,
June 2001, 44–58.

HAYTON, R., BACON, J., AND MOODY, K. 1998. OASIS: access control in an open, distributed envi-
ronment. In Proceedings of 1998 IEEE Symposium on Security and Privacy. Oakland, CA, May
3–6. IEEE Computer Society Press, Los Alamitos, CA, 3–14.

JAJODIA, S., SAMARATI, P., AND SUBRAHMANIAN, V. S. 1997. A Logical language for expressing autho-
rizations. IEEE Symposium on Security and Privacy. May 1997.

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

A Rule-Based Framework for Role-Based Delegation and Revocation • 441

LAMPSON, B. W., ABADI, M., BURROWS, M. L., AND WOBBER, E. 1992. Authentication in distributed
systems: theory and practice. ACM Transactions on Computer Systems 10, 4, 265–310, November
1992.

LI, N., FEIGENBAUM, J., AND GROSOF, B. N. 1999. A logic-based knowledge representation for autho-
rization with delegation (extended abstract). In Proceeding 12th intl. IEEE Computer Security
Foundations Workshop, (extended version is IBM Research Report RC 21492).

LI, N. AND GROSOF, B. N. 2000. A practically implementation and tractable delegation logic. IEEE
Symposium on Security and Privacy. May 2000.

LIEBRAND, M., ELLIS, H. J., PHILLIPS, C., AND TING, T. C. 2002. Role delegation for a distributed,
unified RBAC/MAC. In Proceedings of Sixteenth Annual IFIP WG 11.3 Working Conference on
Data and Application Security King’s College, University of Cambridge, UK July 29–31, 2002.

LINN, J. AND NYSTRÖM, M. 1999. Attribute certification: an enabling technology for delegation and
role-based controls in distributed environments. ACM Workshop on Role-Based Access Control
121–130.

MCNAMARA, C. 1997. Basics of delegating. http://www.mapnp.org/library/guiding/delegate/basics.
htm.

SANDHU, R. 1997. Rational for the RBAC96 family of access control models. In Proceedings of 1st
ACM Workshop on Role-based Access Control.

SANDHU, R., BHAMIDIPATI, V., AND MUNAWER, O. 1999. The ARBAC97 model for role-based adminis-
tration of roles. ACM Transactions on Information and System Security 2, 1(February), 105–135.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control model. IEEE
Computer 29, 2(February).

WIELEMAKER, J. SWI-Prolog. http://www.swi.psy.uva.nl/projects/SWI-Prolog/
YAO, W., MOODY, K., AND BACON, J. 2001. A model of OASIS role-based access control and its

support for active security. In Proceedings of ACM Symposium on Access Control Models and
Technologies (SACMAT), Chantilly, VA, May 3–4, 2001, 171–181.

ZHANG, L., AHN, G., AND CHU, B. 2001. A Rule-based framework for role-based delegation. In
Proceedings of ACM Symposium on Access Control Models and Technologies (SACMAT 2001),
Chantilly, VA, May 3–4, 2001 153–162.

ZHANG, L., AHN, G., AND CHU, B. 2002. A role-based delegation framework for healthcare infor-
mation systems. In Proceedings of ACM Symposium on Access Control Models and Technologies
(SACMAT 2002). Monterey, CA, June 3–4, 2002, 125–134.

Received October 2001; revised July 2002; November 2002; January 2003; accepted April 2003

ACM Transactions on Information and System Security, Vol. 6, No. 3, August 2003.

