
SDNSOC: Object Oriented SDN Framework
Ankur Chowdhary, Dijiang Huang and

Gail-Joon Ahn

{achaud16,dijiang,gahn1}@asu.edu

Arizona State University

Myong Kang, Anya Kim and

Alexander Velazquez

{myong.kang,anya.kim,alexander.velazquez}@nrl.navy.mil

U.S. Naval Research Lab

ABSTRACT
The cloud networks managed by SDN can have multi-tier pol-

icy and rule conflicts. The application plane can have conflicting

user-defined policies, and the infrastructure layer can have Open-

Flow rules conflicting with each other. There is no scalable, and,

automated programming framework to detect and resolve multi-

tier conflicts in SDN-based cloud networks. We present an object-

oriented programming framework - SDN Security Operation Center

(SDNSOC), which handles policy composition at application plane,

flow rule conflict detection and resolution at the control plane. We

follow the design principles of object-oriented paradigm such as

code-re-utilization, methods abstraction, aggregation for the imple-

mentation of SDNSOC on a multi-tenant cloud network. The key

benefits obtained using this approach are (i) The network adminis-

trator is abstracted from complex-implementation details of SFC.

The end-to-end policy composition of different network functions

is handled by an object-oriented framework in an automated fash-

ion. We achieve 37% lower latency in SFC composition compared

to nearest competitors - SICS and PGA. (ii) Policy conflict detection

between the existing traffic rules and incoming traffic is handled by

SDNSOC in a scalable manner. The solution scales well on a large

cloud network., and 18% faster security policy conflict detection

on a cloud network with 100k OpenFlow rules compared to similar

works - Brew, and Flowguard.

CCS CONCEPTS
• Security and privacy → Virtualization and security; • Net-
works → Security protocols; Network performance modeling;
Cloud computing; • Software and its engineering→ Object ori-
ented architectures.

KEYWORDS
Software Defined Networking (SDN); Service Function Chaining

(SFC); Policy Conflict Detection

ACM Reference Format:
Ankur Chowdhary, Dijiang Huang and Gail-Joon Ahn, Myong Kang, Anya

Kim and, and Alexander Velazquez. 2019. SDNSOC: Object Oriented SDN

Framework. In ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (SDN-NFVSec ’19), March 27,
2019, Richardson, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.

org/10.1145/3309194.3309196

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor, or affiliate of the United States government. As such, the United States

government retains a nonexclusive, royalty-free right to publish or reproduce this

article, or to allow others to do so, for government purposes only.

SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6179-8/19/03. . . $15.00

https://doi.org/10.1145/3309194.3309196

1 INTRODUCTION
The centralized command and control mechanism of SDN allows

separation of control and data-plane functionality in a cloud net-

work. The network traffic while servicing a request from a client

to server often passes through various virtual network function

(VNFs), such as Firewall, Intrusion Detection System (IDS), load

balancer. This end-to-end delivery of traffic between two hosts,

while passing through a set of ordered or partially ordered VNFs

and ordering constraints that must be applied to the packets, is also

referred to as service function chaining (SFC) [8].

Challenges in Policy Composition: There are several issues
that limit the deployment of SFC. The security policies of individual

VNFs are intertwinedwith the OpenFlow rules when the underlying

cloud network is managed by SDN. Moreover, the network admin-

istrator needs to take care of topological dependencies between

different VNFs, configuration complexities, consistent ordering of

VNFs in the SFC as highlighted by Quinn et al [16]. The results from
a survey of enterprise middlebox deployments in cloud indicate

that 60-70% of all failures in middleboxes are because of miscon-

figuration issues [17]. There is no production grade framework

currently, which presents the SFC composition as an abstracted

interface to the user/administrator so that he/she is shielded from

underlying details that limit the scalability and security in SFC. The

network-wide policy enforcement using policy graphs has been

considered by PGA [15], but there is a duplication of VNFs while

the SFC is deployed using PGA to achieve the desired packet pro-

cessing capability. We use efficient object-oriented data-structures

to prevent data and code-duplication.

OpenFlow Rule Conflict Issues: The application plane of the

SDN allows distributed authorship of a single policy domain. Ad-

ditionally, the header space of the packet entering the network

may match more than one flow rule in the OpenFlow table. A

new flow rule can enable (or disable) the network traffic that is

otherwise disabled (or enabled) by existing rules. FortNOX [14]

utilizes role-based authorization to enforce conflict detection and

mitigation. The framework, however, considers only pairwise rule

conflicts, without identifying rule dependencies across flow tables.

Veriflow [11], NetPlumber [9], Flowguard [7] use real-time network-

wide invariant checking, rule-dependency analysis for identifying

and resolving rule conflicts, but they lack a declarative and modu-

lar design which can interpret SFC requirements and implement

them agnostic of semantics in which they are used or underlying

hardware. Moreover, these works are limited to flow-rule conflicts

and do not consider the security policies at the application level,

generating the flow rules.

Need for a programmatic framework: Programming frame-

work based on object-oriented hierarchy for policy composition,

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

7

https://doi.org/10.1145/3309194.3309196
https://doi.org/10.1145/3309194.3309196
https://doi.org/10.1145/3309194.3309196

rule detection and mitigation can facilitate code-re-utilization, de-

pendencies between security policies at different layers of the cloud

network while satisfying user requirements. Existing frameworks

such as FRESCO [18] and Frentic [5] consider only traffic monitor-

ing, security application deployment, and query optimization, and

lack a built-in mechanism to check flow rule conflicts.

The key contributions of this research work are as follows:

• SDNSOC checks dependencies between SFC requirements

and creates a policy graph based on object-oriented design

constructs. Policy graph is transformed into OpenFlow rules.

• Utilizes object-oriented design principles such as inheritance,

aggregation, composition in order to identify dependencies

between VNFs, security policies, and conflicts between the

security policies. The framework is able to identify depen-

dencies between security policies, and OpenFlow rules thus

handle policy conflict at multiple layers of the cloud network.

• Identifies the flow rule conflicts at the infrastructure layer

that may arise because of SFC deployment in order to elimi-

nate flow rule conflicts in SDN-based cloud network.

2 BACKGROUND AND MOTIVATION
Definition 2.1. OpenFlow Rule: A flow table F of an OpenFlow

switch, can have rules, {r1, r2, .., rn } Each rule consists of layer 2-4

packet header fields, protocol (TCP/UDP/FTP), action-set associated

with the rule, rule priority, and statistics. We define the flow rule

using tuple ri = (pi , ρi , hi , ai , si), where a) pi denotes rule priority,
b) ρi denotes the protocol of the incoming traffic (TCP/UDP) c) hi
depicts the packet header, d) ai is the action associated with the

rule, e) si represents the statistics associated with the rule.

The flow rule header space hi , consists of physical port of incom-

ing traffic δi , source and destination hardware address, i.e., αs i ,αd i ,
source and destination IP address, βs i , βd i , source and destination

port address, γs i ,γd i . Packet header can be defined by the tuple

hi = (δi , αs i ,αd i , βs i , βd i , γs i ,γd i). Rule statistics si , comprises of

both flow duration and number of packets/bytes for each flow rule

si = (di ,bi).

2.1 Motivating Scenario: Security Policy
Composition Issue

Definition 2.2. Security Policy: A security policy is a packet pro-

cessing requirement specified by the network administrator at the

application plane in form of service function chaining requirement,

which, is composed into a low-level flow or firewall rules on the

network switches.

s e r v i c e −chain −01 {

c l a s s i f i e r { group : employee

po r t : 4 4 3 , 8 0 , d s t : s e r v e r }

50 f i r e w a l l

40 load−b a l a n c e r

30 s e r v e r }

s e r v i c e −chain −02 {

c l a s s i f i e r { group : remote−use r po r t : 4 4 3 , 8 0

d s t : web− s e r v e r }

50 vpn

40 web− s e r v e r }

Consider the security policies above, there are two service func-

tion chains, i.e., service-chain-01 and service-chain-02. The first ser-
vice chain requirements want all users in the group employee to pass
through the firewall, load balancer while trying to access the server

VM on ports 80,443. On the other hand, the second service chain

allows employees who are in External-User group to access web-

server through port 80 using VPN. The numeric values [50.40,30]

in front of individual VNFs indicate their order of precedence in

the VNFs in the SFC.

Definition 2.3. Security Policy Composition: The end-to-end
service chain creation which satisfies, all the access requirements

for different security groups while maintaining the satisfaction of

security constraints. An example of a security constraint is that the

firewall always operates on the raw un-encrypted traffic.

The two policies have been composed by different security ad-

ministrators, and leads to security constraint violation, since the
External-User inherits Employees and Web-Server inherits Server,
and the traffic passing through the VPN box is tunneled directly to

the web-server without being inspected by the Firewall.

We can use the VNF object-oriented (OO) chain creation to com-

pose the security policies from individual SFC requirements. The al-

gorithm will identify the relationship between different SFC groups

and create an end-to-end chain satisfying security constraints.

2.2 Motivating Scenario: Flow Rule Conflict
Analysis

Definition 2.4. PacketClassification:The incoming traffic packet

for a network, Πi , can be classified into subset of rules Rm from the

ruleset of the entire network R, i.e., Rm ⊆ R, where Rm = {∀
m
i=1ri }.

Definition 2.5. Conflict Detection problem [3] seeks to find the

rules ri , r j ∈ Rm , which have are conflicting with each other, i.e.,

(ρi = ρ j) ∧ (hi ∩hj , ∅) ∧ (ai , aj) ∧ (pi , pj). The variables used
here, have been defined in Definition 2.1 earlier.

Table 1: Motivating Scenario - Conflict Detection

Flow-ID Src-IP Dst-IP Src-Port Dst-Port Action
1 1 [0-100] 2 [0-100] drop

2 1 [0-100] [2,4] [0-100] srcip=5

3 2 [0-100] [2,4] [0-100] fwd

4 [5,8] [0-100] [0,8] [0-100] srcip=2

Consider, Table 1, we use simple numeric values for source and

destination addresses for concise representation and consider other

OpenFlow fields, e.g., layer 2 source and destination addresses to

be wildcarded. There is two type of violations here.

Coverage Violation: The rules 1 and 2 have overlapping header
space, the Src-IP of the rules is same, the destination IP of rule 2 is

a superset of rule 1, whereas the actions for both rules are different.

Transitive Violations: The According to rule with Flow-ID ’1’

present in the table, every packet from Src-IP 1 towards Dst-IP 2

must be dropped, however, rule 2 in the table allows modification

of source IP to value 5, and the rule 4 sets the source IP of any field

between [5-8] to the value 2. Thus, using rules 1,3, and 4 the traffic

between Src-IP 1 and Dst-IP 2 is allowed.

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

8

Research works, Flowguard [7], and Brew [13], focus on only

on Firewall as a use-case for security policy conflict detection, and

fail to identify Transitive Violations. In this paper, we use object-

oriented fundamentals, and, classify the flow rule dependencies

into Inheritance, Polymorphism, Aggregation, and Composition to

identify both direct and indirect dependencies between OpenFlow

rules.

3 SDNSOC ARCHITECTURE

SDNSOC Application Layer

Traffic
Statistics

Topology
Discovery

SFC
Composer

Network Admin

IDS
Load

Balancer
Firewall

Web
Server

DPI
WAN

Optimizer

TopoChange
Event Listener

VNF-Graph

Flow Conflict
Analyzer

Flow Rule
Visualizer

Operational
DB

AAA

LDAP

 GET: {token, session_id}GET:{flow_conflict_graph}

Control Plane

POST: /sfc-requirements

GET: /network-topo
GET: /traffic-stats

OF-Switch OF-SwitchOF-Switch

GRE/VXLAN

Figure 1: SDNSOC Architecture

The SDNSOC, as shown in the Figure 1, is divided into three

layers, i.e., application plane layer - which consists of UI where user

can login, and perform network analytics such as traffic statistic

detection, topology visualization, OpenFlow table rule visualization

and SFC requirement specification, control plane layer - we use

OpenDaylight (ODL) controller in the control plane. The UI has

been implemented in a PHP lavarel based framework.

TopologyDiscovery:The controller consists of topology change
event listener, which listens on the events such as port status (UP-

/DOWN), switch status, port information of hosts connected to

switches.

SFC Composition and VNF-Graph: The application plane

consists of SFC composition template, along with the order of prece-

dence for processing of different VNFs. Since multiple-users can

specify service chains at a given point-in-time. The VNF-Graph

creator module in the control plane compiles the requirements of

SFC specified by the user.

Conflict Analyzer: The conflict analysis module utilizes REST

API to fetch the Flow rules from OpenFlow switches using REST

API. The rules are analyzed for potential overlap in the header

match and action fields, which can lead to the violation of end-to-

end security policies or service delivery. The conflicting flow rules

can be visualized at the dashboard UI for in-depth analysis by the

network administrator. The VNFs are connected to the OpenFlow

switches. The switches, which belong to different network segments

are connected using GRE/VXLAN.

4 OBJECT ORIENTED SFC FRAMEWORK
We design an object-oriented multi-tiered network security archi-

tecture to provision distributed security in a cloud data-center. A

VNF, or networking domain can be considered a class. A class

can be instantiated to create an object which represents a specific

implementation of the class.

Inheritance enables new classes to inherit the properties and

methods of the existing classes. A class which inherits from the

superclass is called a subclass or derived class. For instance, con-

sider a class Subnetwork which provides the basic layout of the

network bits and host bits, e.g., for a class B Subnet Prefix is 16 and

Host Prefix is 16, thus there can be 16 host bits or 2
16

hosts that

can be present in this subnetwork. The class Ethernet Address can
inherit the network mask functionality (Network and Host Prefix)

from the class Subnetwork. In addition, subclass also adds features

such as IPv4 address (e.g., 192.168.1.12), Gateway (e.g., 192.168.1.1),

Nameserver (e.g., 8.8.8.8) and broadcast address (e.g., 192.168.1.255).

An object for this class is ethernet address for a specific host.

Polymorphism is one of the features inOOP that allows a single

action to be performed in different ways. Using the polymorphism

in virtual network functions allows the creation of one interface for

instance Firewall , that can be realized in a different way depending

upon the application requirement. The smart firewall architecture

like Cisco-ASA [6] implements several security features such as

Intrusion Detection, Anti-malware capabilities and VPN service

in one single device. A polymorphic design of VNF can help in an

extension of current VNFs to new firewall architecture. A stateless

firewall, which provides basic functions of traffic filtering and NAT,

can be extended to a stateful firewall, providing connection tracking

for stateful applications, intrusion prevention system (IPS), etc.

Figure 2: Association in object-oriented architecture

Aggregation is a weak form of association that enables one

VNF to utilize another, without having to re-implement the func-

tional logic present in original VNF. For instance, Next Generation

Firewall (NGFW) as shown in the Figure 2(a), typically comes with

features such as VPN and DPI. The NGFW and VPN can, however,

function as a standalone VNFs even if either is missing in security

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

9

architecture. These weak associations allow re-utilization of desired

features amongst VNFs using a has-A relationship.

Composition on the other hand, is a stronger form of associa-

tion, usually represented by part-Of relationship. The functionality

of Network Address Translation (NAT) cannot exist by itself, and it

requires the presence of Firewall VNF as shown in the Figure 2(b).

The firewall module can call setNATIP() and setNATPort() func-

tions in the class NAT in order to allow NAT feature mapping an

external IP address/port to an internal IP address/port in addition

to other features such as port forwarding and blocking a certain

type of network traffic.

5 SDNSOC SFC COMPOSITION, CONFLICT
DETECTION AND RESOLUTION

5.1 Flow Composition

Algorithm 1 SFC-Composition

1: procedure VNF-Graph(SFC, C)
2: SFC ← List of Service Chains

3: C ← List of classification constraints

4: G ← ∅ VNF Graph
5: for ci ∈ C do
6: for s f c j ∈ SFC do
7: if ci j .match ∩ s f c j .ranдe , ∅ then
8: G.addnode(ci j .дroup)
9: end if
10: end for
11: end for
12: for i ∈ G .nodes do
13: for j ∈ G .nodes do
14: if i .ranдe ∈ j .ranдe | |j .ranдe ∈ i .ranдe then
15: G.addedge(i,j,inheritance)

16: else if i .ranдe ∩ j .ranдe , ∅ then
17: G.addedge(i,j,aggregation)

18: end if
19: end for
20: end for
21: Return G

22: end procedure

The algorithm 1 finds the dependencies between various service

function chains and the classification criteria defined as the part of

classification constraints. For any incoming traffic, lines 5-7 checks

the classification constraints against each service function chain

(SFC). If there is a match on the incoming traffic header, a node is

added to the VNF-Graph, as shown in the line 8. In the second part

of the algorithm, lines 12-20, all the nodes of the graph are matched

against each other to check the range overlap, if one node’s IP-range

is a subset of other, we define inheritance relation between graph

nodes. On the other hand, if there is a partial overlap, we define an

aggregation relationship. Thus, the edges between the graph nodes

are added in this part. The VNF-Graph is converted parsed and

converted to flow-rules corresponding to each node of the graph.

The flow rules are checked for conflicts based on header space and

actions overlap, which we discuss in the next subsection.

5.2 Flow Rule Conflict Detection

j

i

Inheritance

j

i

Polymorphism

i j Aggregation

i j Composition

i j No Conflict

rule j: table=0, in_port=2, dl_dst=*
actions=output:DROP
 rule i; table=0, in_port=2,
dl_dst=00:00:00:00:00:01 actions=DROP

rule j: table=0, in_port=2, dl_dst=00:00:00:00:00:01
actions=output:1
 rule i; table=0, in_port=2,
dl_dst=00:00:00:00:00:01,ip_src=192.16.1.1
actions=DROP

rule j: table=0, in_port=2, ip_src=192.168.1.0/24
actions=output:1
 rule i; table=0, in_port=2,
dl_dst=00:00:00:00:00:01,ip_src=192.16.1.10
actions=output:1

rule j: table=0, in_port=2, ip_src=192.168.1.0/24
actions=DROP
 rule i; table=0, in_port=2,
dl_dst=00:00:00:00:00:01,ip_src=192.16.1.10
actions=output:ALL

rule j: table=0, in_port=2, ip_src=192.168.1.0/24
actions=output:1
 rule i; table=0, in_port=4, ,ip_src=192.16.4.10
actions=output:1

Figure 3: OpenFlow Rule Conflict Analysis

We utilize the class hierarchy that we described for different

VNFs in the previous section to illustrate the process of flow rule

conflict identification. We consider the overlap in the action fields.

As shown in the Figure 3, we can have four different cases of an

object-oriented framework, which can cover different scenarios of

flow rule conflicts.

• Inheritance: As shown in the example above, the header

fields hi ⊆ hj , and actions of both rules are same, thus rule i
is a specialization of rule j.
• Polymorphism: The example showcases two rules, where

rule i inherits the header values of rule j, however, the action
fields are different. This is similar to polymorphism property

in the object-oriented design, thus we classify such cases of

rules are polymorphic conflicts.

• Aggregation: Rules (i, j) in the example of aggregation have

overlapping header fields, i.e., hi ∩ hj , ∅, however, both
rules, have same action, thus a third rule, k can replace both

rules, but this doesn’t happen automatically in flow tables.

We classify such conflict scenarios as aggregation.

• Composition: Rules (i, j) in this conflict scenario have over-

lapping header fields, and conflicting actions, thus the inter-

secting part of both rules, hi ∩hj , is composed of aggregated

actions from both rules. This type of rule conflicts can be

classified into composition category.

The cases where there is no overlap in the header fields, there is

no case of rule conflict, irrespective of the actions, as shown in the

Figure 3.

6 IMPLEMENTATION AND EVALUATION
6.1 System Setup
We utilized an OpenStack based cloud network comprising of two

Dell R620 servers and two Dell R710 servers all hosted in the data

center - Science DMZ [1]. Each Dell server has about 128 GB of

RAM and 16 core CPU. The SDN controller Opendaylight-Carbon

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

10

was provided network management and orchestration in our frame-

work. The VNFs Web Server, OpenVPN, Firewall (netfilter), and

load balancer (nginx) were used for evaluation of SFC composition

and conflict analysis. The flow rules were installed on OpenFlow

switches managed by SDN controller.

6.2 SFC Flow Composition Analysis

6.3 Composition Time Comparative Analysis

0.2 0.4 0.6 0.8 1 1.2 1.3

·104

20

50

100

200

300

400

500

Number of Rules

C
o
m
p
o
s
i
t
i
o
n
T
i
m
e
s
(
s
)

SDNSOC PGA SICS

Figure 4: Number of Rules vs Composition Time - SDNSOC,
PGA [15], SICS [19]

We performed a comparative analysis of composition time for

SDNSOC against policy composition time of PGA [15] and SICS

framework [19]. We use rules as a generic term to define PGA nodes,

SICS rules, and OpenFlow rules, and to have a common comparison

format.We observed that SDNSOC achieves faster composition time

- 20s for 10k rules, and 25s for about 12k rules. The composition

time for SICS was slightly higher than our framework, i.e., 31.5s

for 10k rules and 37.5s for 12k rules. The composition time for

PGA scales poorly with the number of rules as can be seen in the

Figure 4. PGA takes about 400s for the composition of 10k rules

and 500s for 12k rules. The performance degradation in SICS can

be attributed to encryption overhead, whereas in the case of PGA,

the poor scaling is because of duplication of SFs across the network.

The comparison of SDNSOC with these frameworks shows that

SDNSOC will scale well with the number of policy rules.

6.4 Flow Rule Conflict Analysis
We performed experiment to analyze the number of conflicts - In-
heritance (IN), Polymorphism (P), Aggregation (A) and Composition
(C) in the translated OpenFlow rules. The x-axis in the Figure 5

denotes the number of OpenFlow rules - 5k, 16k, and 25k. As the

number of OpenFlow rules increased, we observed an increase in

the number of conflicts. For the dataset with 5k OpenFlow rules,

we identified 484 conflicts because of inheritance dependency, 936

polymorphism related conflicts, 9 aggregation conflicts, and 24 com-

position conflicts. Our conflict checking algorithm identified 1041

inheritance conflicts, 1989 polymorphism, conflicts, 49 aggrega-

tion conflicts and 336 composition conflicts in 25k OpenFlow rules.

0.5 1.6 2.5
·104

300

600

900

1,200

1,500

1,800

2,200

2,500

4
8
4

8
4
3

1
,0
4
1

9
3
6

1
,6
4
3

1
,9
8
9

9 2
5

4
9

2
4 1
2
0

3
3
6

Number of Flows

N
u
m
b
e
r
o
f
C
o
n
fl
i
c
t
s

IN P A C

Figure 5: Number of Conflicts in OpenFlow Rules

The experiment demonstrates that managing conflicts for even few

thousand rules manually can be quite challenging. Hence we use

an automated detection and resolution framework for flow rule

conflicts.

We performed a comparison of the flow rule conflict detection al-

gorithmwith OpenFlow conflict checking research works Brew [13]

and Flowguard [7]. Object-oriented conflict detection is able to de-

tect transitive conflicts using multi-level inheritance, which have

not been considered by both works. Additionally, our framework is

generalizable to many different VNFs, whereas Brew and Flowguard

only considered policy conflict issues in a firewall. Our experimen-

tal results show that there can be large a number of conflicts in

flow rules that can be identified only by automated composition

and conflict analysis using an object-oriented framework.

6.5 Flow Rule Conflict Analysis Scalability
In this experiment, we utilized the Stanford University backbone

network topology [9] for analyzing the scalability of conflict detec-

tion algorithm. The network consists of multiple layers of switches

and routers, about 13k routes and 757k forwarding rules, 100 VLANs,

and 900 ACL rules. The network was simulated using mininet,

routers and switches were replaced with OVS, and the flow rules

from the actual network were inserted using a python script.

We compared the running time for detecting conflicts of the

object-oriented policy conflict detection method, with existing pol-

icy conflict detection works, Brew and Flowguard, which utilize

Stanford topology for experimental analysis. The performance of

SDNSOC is slightly slower than Brew for 10k rules ∼9ms, but as

the size of the flow rules increases, the SDNSOC performs better

than both Brew and Flowguard. Flowguard only considered con-

flict detection for about 40k rules, the performance of our conflict

checking procedure (19ms) is significantly better than Brew (22ms)

and Flowguard (39ms) for 40k rules. The results from the Figure 6,

shows that the running time for 50k flow rules is 25ms, and about

45ms for 100k flow rules, which is clearly 18% performance gain

over Brew (55ms). Hence the flow rule conflict detection algorithm

based on object-oriented principles scales well on the large network.

The performance gain of SDNSOC can be attributed to the fact that

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

11

1 2 3 4 5

·104

10

20

30

40

Number of Rules

R
u
n
n
i
n
g
T
i
m
e
(
m
s
)

SDNSOC Brew Flowguard

Figure 6: Number of Flow Rules vs Policy Conflict Detection
Time - SDNSOC, Brew [13], Flowguard [7]

once VNF-Graph is constructed, the search for conflicts in hierar-

chical structure when a new rule is added, is a trivial operation,

compared to the matching of new rule against every other rule in

case of Brew, and Flowguard.

7 RELATEDWORK
Policy Aware automatic composition of multiple independent net-

work policies and Access Control Lists (ACLs) using graph-based

expression has been discussed by Prakash et al [15]. FlowTags [4]
extends SDN architecture for adding tags to outgoing packets. This

provides a necessary context for policy enforcement. These works

do not, however, consider possible overlaps between network poli-

cies based on packet header match. Works that focus on policy

safety and efficiency of SFC like SDN based virtual firewall dis-

cussed by Deng et al [2] consider issues like semantic consistency,

buffer overflow avoidance, and scalability but their application is

limited to the firewall VNF. In our work, we use an object-oriented

design that achieves optimal SFC composition and policy conflict

resolution to allow different VNFs to provide a seamless service

function chain (SFC).

Flow Rule Conflict analysis based on SDN flow rules has been

considered by Pisharody et al [12, 13]. The research work only

considers layer 2-4 flow rules and focus on traditional north-south

traffic in a data-center. Our work considers more detailed policy

conflicts at application as well as OpenFlow switch level. Veri-

flow [11] and NetPlumber [10] lack automatic real-time security

policy resolution mechanism. The research work, however, does

not consider indirect security policy violation detection. The object-

oriented framework proposed in our work identifies the indirect

violations by a notion of inheritance and generalizations between

the dependent VNFs.

8 CONCLUSION
We discuss the problems associated with policy composition and

flow rule conflict in this paper because of different administrative

domains, and multi-tenancy in the SDN-managed cloud network.

We utilized object-oriented principles to identify the policy de-

pendencies at application tier and flow rule conflict issues at the

infrastructure layer. The SDNSOC’s architecture is able to provide

scalable and faster policy composition, flow-rule conflict detection

compared to existing works. As an extension of this research work,

we plan to check application and effectiveness of SDNSOC on other

platforms, which are not SDN-based such as Amazon cloud, and

Google cloud platform.

ACKNOWLEDGMENT
All authors are gratefully thankful for research grants from Naval

Research Lab N00173-15-G017 and National Science Foundation US

DGE-1723440, OAC-1642031, SaTC-1528099.

REFERENCES
[1] Chowdhary, A., Dixit, V. H., Tiwari, N., Kyung, S., Huang, D., and Ahn, G.-J.

Science dmz: Sdn based secured cloud testbed. In Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2017 IEEE Conference on (2017), IEEE,

pp. 1–2.

[2] Deng, J., Li, H., Hu, H., Wang, K.-C., Ahn, G.-J., Zhao, Z., and Han, W. On the

safety and efficiency of virtual firewall elasticity control. In Proceedings of the
24th Network and Distributed System Security Symposium (NDSS 2017) (2017).

[3] Eppstein, D., and Muthukrishnan, S. Internet packet filter management and

rectangle geometry. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms (2001), Society for Industrial and Applied Mathematics,

pp. 827–835.

[4] Fayazbakhsh, S. K., Sekar, V., Yu, M., and Mogul, J. C. Flowtags: Enforcing

network-wide policies in the presence of dynamic middlebox actions. In Pro-
ceedings of the second ACM SIGCOMM workshop on Hot topics in software defined
networking (2013), ACM, pp. 19–24.

[5] Foster, N., Harrison, R., Freedman, M. J., Monsanto, C., Rexford, J., Story,

A., and Walker, D. Frenetic: A network programming language. ACM Sigplan
Notices 46, 9 (2011), 279–291.

[6] Frahim, J., and Santos, O. Cisco ASA: All-in-One Firewall, IPS, Anti-X, and VPN
Adaptive Security Appliance. Pearson Education, 2009.

[7] Hu, H., Han, W., Ahn, G.-J., and Zhao, Z. Flowguard: building robust firewalls

for software-defined networks. In Proceedings of the third workshop on Hot topics
in software defined networking (2014), ACM, pp. 97–102.

[8] Huang, D., Chowdhary, A., and Pisharody, S. Software-Defined Networking
and Security: From Theory to Practice. CRC Press, 2018.

[9] Kazemian, P. Header space analysis: Static checking for networks.

[10] Kazemian, P., Zeng, H., Varghese, G., McKeown, N., and Whyte, S. Real time

network policy checking using header space analysis.

[11] Khurshid, A., Zhou, W., Caesar, M., and Godfrey, P. Veriflow: Verifying

network-wide invariants in real time. In Proceedings of the first workshop on Hot
topics in software defined networks (2012), ACM, pp. 49–54.

[12] Pisharody, S., Chowdhary, A., and Huang, D. Security policy checking in

distributed sdn based clouds. In Communications and Network Security (CNS),
2016 IEEE Conference on (2016), IEEE, pp. 19–27.

[13] Pisharody, S., Natarajan, J., Chowdhary, A., Alshalan, A., and Huang,

D. Brew: A security policy analysis framework for distributed sdn-based cloud

environments. IEEE Transactions on Dependable and Secure Computing (2017).

[14] Porras, P., Yegneswaran, V., Shin, S., and Gu, G. A security enforcement

kernel for openflow networks hotsdn 2012.

[15] Prakash, C., Lee, J., Turner, Y., Kang, J.-M., Akella, A., Banerjee, S., Clark, C.,

Ma, Y., Sharma, P., and Zhang, Y. Pga: Using graphs to express and automatically

reconcile network policies. In ACM SIGCOMM Computer Communication Review
(2015), vol. 45, ACM, pp. 29–42.

[16] Quinn, P., and Nadeau, T. Problem statement for service function chaining.

Tech. rep., 2015.

[17] Sherry, J., Ratnasamy, S., and At, J. S. A survey of enterprise middlebox

deployments.

[18] Shin, S. W., Porras, P., Yegneswara, V., Fong, M., Gu, G., and Tyson, M. Fresco:

Modular composable security services for software-defined networks. In 20th
Annual Network & Distributed System Security Symposium (2013), NDSS.

[19] Wang, H., Li, X., Zhao, Y., Yu, Y., Yang, H., and Qian, C. Sics: Secure in-cloud

service function chaining. arXiv preprint arXiv:1606.07079 (2016).

Session: SDN/NFV Security Architecture SDN-NFVSec ’19, March 27, 2019, Richardson, TX, USA

12

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Motivating Scenario: Security Policy Composition Issue
	2.2 Motivating Scenario: Flow Rule Conflict Analysis

	3 SDNSOC Architecture
	4 Object Oriented SFC Framework
	5 SDNSOC SFC Composition, Conflict Detection and Resolution
	5.1 Flow Composition
	5.2 Flow Rule Conflict Detection

	6 Implementation and Evaluation
	6.1 System Setup
	6.2 SFC Flow Composition Analysis
	6.3 Composition Time Comparative Analysis
	6.4 Flow Rule Conflict Analysis
	6.5 Flow Rule Conflict Analysis Scalability

	7 Related Work
	8 Conclusion
	References

