Reception and Posters

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

SECoRE: Continuous Extrospection with High Visibility on
Multi-core ARM Platforms

Penghui Zhang, Bernard Ngabonziza, Haehyun Cho, Ziming Zhao, Adam Doupé, Gail-Joon Ahn
Arizona State University
{pzhang57,bngabonz,hcho67,zmzhao,doupe,gahn}@asu.edu

ABSTRACT

We present SECORE, which is a novel continuous extrospection
system on multi-core ARM platform. SECORE leverages ARM Trust-
Zone technology to keep one core in the secure world and assure
the integrity of the static kernel data and code in the normal world.
By breaking the original time-sharing paradigm of such systems,
SECORE enables continuous coprocessor-like monitoring with high
visibility into the rich execution environment on mobile and IoT
platforms. By ensuring that secure tools execute on certain physical
CPU cores, the system’s attack surface is also significantly reduced.

ACM Reference Format:

Penghui Zhang, Bernard Ngabonziza, Haehyun Cho, Ziming Zhao, Adam
Doupé, Gail-Joon Ahn. 2018. SECore: Continuous Extrospection with High
Visibility on Multi-core ARM Platforms. In Proceedings of Eighth ACM Con-
ference on Data and Application Security and Privacy, Tempe, AZ, USA, March
19-21, 2018 (CODASPY ’18), 3 pages.
https://doi.org/10.1145/3176258.3176948

1 INTRODUCTION

Existing mobile and IoT systems and applications are fraught with
vulnerabilities and prone to many attacks. In particular, attacks that
can compromise OS kernels are a growing threat. When attackers
take the control of an OS kernel, they can hide their traces, steal
sensitive information, and install backdoors. Therefore, monitoring
and protecting OS kernel has received significant attention. Existing
techniques of monitoring and protecting the security of OS can be
categorized into two classes:

1) Host based intrusion detection, where the intrusion detection
system (IDS) runs as a monitor on its host from a higher privileged
mode, such as a hypervisor and collects information used to identify
possible intrusions on that host [2, 5]. The approach, which is named
virtual machine introspection (VMI), significantly increases the size
of the trusted computing base (TCB).

Hardware-isolated execution environment (HIEE), such as ARM
TrustZone, enables another way of host based kernel protection on
mobile and IoT platforms by running kernel protection tools in an
isolated execution environment called the trusted execution envi-
ronment (TEE), whose memory and peripherals can be physically
isolated from a rich execution environment (REE) [1, 4, 7].

However, existing HIEE based solutions suffer from many if
not all following limitations: i) a compromised REE kernel can

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CODASPY ’18, March 19-21, 2018, Tempe, AZ, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5632-9/18/03.

https://doi.org/10.1145/3176258.3176948

161

perform many types of denial-of-service attacks (DoS) on the TEE
by refusing to relinquish the control of CPU [6]; ii) it is required
that the security world returns as soon as possible. Otherwise,
running inside the TEE for a long time could jeopardize the stability
and usability of the normal world commodity OS; iii) the context
switches from the TEE to the REE, and vice versa are very expensive,
which significantly increase the performance overhead and power
consumption.

2) Secure coprocessor based intrusion detection, where the state
and data of the host is collected and processed by monitoring soft-
ware running on an external hardware coprocessor [3]. Secure
coprocessors have many advantages including isolated and contin-
uous monitoring and low interaction with the target OS. However,
compared with VMI they retain relatively low visibility into the
host, since they only play the role of an outside peer.

In this paper, we present a hardware-based security framework,
namely SECORE, in which one or more general purpose computing
cores will stay in a hardware-isolated or safe execution environment
to monitor the system running in the rich execution environment.
Different from the existing paradigm of hardware-isolated envi-
ronments, where CPU cores switch between a privileged mode
(secure world in TrustZone) and a normal mode (normal world in
TrustZone), the proposed idea breaks the time-sharing paradigm of
cores, which enables both coprocessor-like continuous monitoring
and host-based-solution-like high visibility into the rich execu-
tion environment within a CPU. Different from virtual machine
introspection where the guest OSes run inside the hypervisor, in
SECORE the monitored OS or hypervisor do not run directly inside
the monitoring system and tools. Indeed, the inspection tools run
outside the rich execution environment but retain high visibility
of the rich execution environment. We call this kind of inspection
extrospection.

2 DESIGN AND IMPLEMENTATION OF
SECORE

SECORE has three major steps in achieving extrospection: In Step 1,
SECORE changes the boot process of the dedicated cores and make
sure world switching instructions will never be executed on this
cores. In Step 2: SECORE accesses the monitored system from the
monitoring Cores. The challenges in enabling monitoring cores to
access the monitored system include configuring the undocumented
on-chip registers, since most vendors do not implement the standard
memory space controller. We reverse engineer available firmware to
understand how different SoCs support the memory configurations.
In Step 3: SECORE monitors the normal world continuously.
SECORE has three features. First, tamper-resistance. Since SEC-
oRrE and the nomral world are isolated via the ARM TrustZone
security extension, the normal world does not have the authority


https://doi.org/10.1145/3176258.3176948
https://doi.org/10.1145/3176258.3176948

Reception and Posters

Normal Cores

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

Cores Dedicated for Security Uses

Normal World Secure World

Secure World

to EL0 EL0
& =) )
L =) =) B (Secure World 05 ELL Security Tools
[os ] Secure World Firmware Secure World Firmware
£
ZE) 3E)
Secure World Firmware Secure World Firmware
ROM Firmware ROM Firmware
Monitor Mode Code Security Tools

Figure 1: SECORE Architecture.

to access any resouces in SECORE, which makes SECORE tamper-
resistant. Second, Continuous. We do not need to stop the nor-
mal world’s execution for SECORE to perform extrospection. Both
SECORE and the normal world operating system run concurrently.
Third, stealty. It is difficult for the normal world to detect SECORE’s
extrospection is executing, which makes SeCore stealthy.

We implement SECoRE on a Hikey board which has 8 ARM
Cortex-A53 1.2GHz cores and 2GB of memory. Regarding the soft-
ware stack, the secure world side runs OP-TEE, combined with
ARM Trusted Firmware (ATF), while the normal world runs Linux.

2.1 SECORE Boot Process

In the normal boot process of a TrustZone-enabled platform, all
cores boot in the secure world monitor mode <mon | s>. The cores
are divided into one primary core and secondary cores. The sys-
tem initializes the primary core first and let the primary core to
wake the secondary cores up to get initialized. A bootloader that
runs in <mon|s> sets up the environment, such as the stack for
each mode, before it transfers control to the secure world operat-
ing system. The secure world operating system finishes its own
initialization in <svc|s> and gives control back to a monitor by
executing the SMC instruction. The code that runs in <mon| s> then
switches the core’s state from secure to non-secure. Then, the op-
erating system running in the normal world, such as Linux and
Windows, takes over and starts executing in <svc|ns>mode. When
the normal world operating system needs services from the secure
world, it executes SMC that forces the core to enter <mon | s> mode.
Then, the monitor code will dispatch the request accordingly.

SECORE’s initialization is different from the normal cores since
the secure world operating system does not gives control to the
normal world after finishing the initialization of SECORE.

Listing 1 shows how we implement SECORE during the boot-
ing procedure inside function vector_cpu_on_entry. Register x0

stores the number of CPU after the execution of function get_core_pos.

Function vector_cpu_on_entry allows us to select one or more
secondary cores as SECORE according to our needs. In this example,
we just select one core as SECORE and SECORE is implemented to
initialize the 7th core which should stay in the secure world from
Line 9. After selecting 7th core as SECORE, it jumps to secore_func
which goes to execute SECORE functions.

162

2.2 Accessing Normal World Memory

SECORE first needs to allow the secure world to access all the mem-
ory space, which includes RAM, peripherals, etc., at boot time. Note
that SECorE will also make sure some memory address space, such
as the secure world’s physical memory, cannot be accessed from the
normal world at this step. This can be done by configuring Trust-
Zone Address Space Controller (TSC). However, on some platforms
the TSC is replaced by a vendor-specific address space controller,
which normally does not come with documentations.

We identified such as a memory controller on HiKey board at
memory address 0xF7121000 that is very similar with TSC. Even
though it is undocumented, the PIs were able to reverse engineer
the associated code and perform several experiments to understand
how it works. It turns out that, when secur_boot_lock signal is
high, its register SEC_LOCKDOWN_SELECT will be set as read-only.
Also, other registers specified in SEC_LOCKDOWN_SELECT will be
set as read-only. And, they can only be unset by a poweron reset.
So, SeCore software module can first configures the controller at
address 0xF7121000 including SEC_RGN_MAP, SEC_RGN_ATTRIB, and
others to specify secure world can see the whole physical memory
space and normal world can only see some of it. Then, SeCore lock
the registers, which cannot be reverted until next power-on reset.

2.3 Continuous Extrospection

SECORE monitors the normal world kernel static memory by staying
outside the environment. SECORE functions execute in the secure
world exception level 3 (EL3), which has the highest privilege to
monitor all the memory in the normal world. Therefore, SECORE has
the ability to extrospect the static memory regions of the normal
world kernel, which stays in the normal world exception level (EL1).

Even though TrustZone architecture allows the secure world to
access all the memory of the normal world, the memory area still
needs to be mapped before the secure world can actually access it.
After the initialization of cores, SECORE needs to access the static
code and data in the normal world kernel memory. However, the ad-
dresses SECORE has are the virtual addresses. To solve the problem,
SECORE needs to translate these virtual addresses to the physical
addresses first, and then it can access the static memory region of
the normal world kernel using the physical addresses. We imple-
mented a function called va2pa_in_sec() to translate the starting
and ending virtual addresses of the static kernel memory regions



Reception and Posters

1 LOCAL_FUNC vector_cpu_on_entry ,

2 adr x16, thread_cpu_on_handler_ptr
3 ldr x16, [x16]

4 blr x16

5 mov x19, x0

6 bl get_core_pos

7

8 /* select SeCorex/

9 cmp x0, #7

10 beq secore_func

11

12 mov x1, x19

13 ldr X0, =TEESMC_OPTEED_RETURN_ON_DONE
14 smc #0

15 b /* SMC should not return =/

16 END_FUNC vector_cpu_on_entry

20 LOCAL_FUNC secore_func ,

21 /* execute functionalities of SeCore */
22 b secore_func_in_c

23 b .

24 END_FUNC secore_func

Listing 1: Code of Core Initialization in SECORE

in the normal world to physical addresses so that SECORE can read
the static code and data in the normal world kernel memory.

After SECORE gets the virtual address corresponding to the static
memory region of the normal world kernel, it has the ability to
monitor the normal world kernel and to check its integrity. In SEC-
ORE, integrity checking and monitoring take place continuously. As
the static data in the normal world kernel memory is consecutively
mapped, binaries in the static memory regions of the normal world
kernel are read by accessing through the starting to the ending
physical addresses which are converted from the virtual addresses
by SECORE at first. To measure the integrity of static data and
code, we compute the original hash values of the binaries using a
cryptographic hash function before all processes begin to execute.

We store these hash values in order to check the integrity of static
code and data later. After this, processes start being executed, and
we implement a function integrity_check() running in SECORE
to check the integrity continuously, by hashing the memory regions
of the normal world kernel again, and comparing the hash values
with the original one. If the hash values match with each other, the
integrity of static code and data is guaranteed. If the hash values do
not match with each other, it means that the static kernel memory
region in the normal world has been tampered.

3 FUTURE WORK

The current version of SECORE checks the static code and data in
the normal world kernel memory, which is linearly mapped in the
memory. This feature offers us a convenient way to read all the data
in binary as long as we know the starting and ending addresses of
one specific memory region. However, the attackers would attempt
to tamper the dynamic code to make the attacks successful. Unlike
the static code and data, it is much more difficult to check the

163

CODASPY'18, March 19-21, 2018, Tempe, AZ, USA

integrity of dynamic data memory region, as the data is changing
all the time when the system is running. It is a challenge for an
integrity check to distinguish between a normal operation and a
potential tampering behaviour. In the future, we plan to enhance
SECORE to monitor dynamic areas as well.

Given the number of vulnerabilities discovered in hypervisors, it
is imperative to design a framework that is not only able to perform
virtual machine introspection but also hypervisor inspection. How-
ever, no existing solution that can provide an unified framework
to monitor and protect kernel and hypervisor simultaneously. We
plan to extend SECoRE for hypervisor inspection in the future.

A major limitation of secure coprocessors based intrusion de-
tection systems is their visibility into the host is limited due to
the fact that they play the role of outside peers. This characteristic
makes it impossible to perform event-triggered monitoring without
modifying the host system. We plan to extend SECoORE with the
functionality of event-triggered extrospection in the future.

4 CONCLUSION

We presented SECORE, an innovative continuous high visibility
extrospection technique on multi-core ARM platform in this paper.
SECORE exploits ARM TrustZone technology to keep one core in
the secure world forever, assuring the computing integrity of data.
By breaking the original time-sharing paradigm of such systems,
SECORE enables continuous coprocessor-like monitoring with high
visibility into the rich execution environment on such mobile and
IoT platforms. And by ensuring that secure tools execute on certain
physical CPU cores, the system’s attack surface is significantly
reduced. Also, with the increasing number of mobile CPU cores
and based on the results of evaluation, SECORE only introduces a
negligible overhead.

5 ACKNOWLEDGEMENT

This work is partially supported by a grant from the Center for
Cybersecurity and Digital Forensics at Arizona State University.

REFERENCES

[1] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision Across Worlds: Real-time
Kernel Protection from the ARM TrustZone Secure World. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,
90-102.

Tal Garfinkel, Mendel Rosenblum, et al. 2003. A Virtual Machine Introspection
Based Architecture for Intrusion Detection.. In Ndss, Vol. 3. 191-206.

Hojoon Lee, Hyungon Moon, Ingoo Heo, Daehee Jang, Jinsoo Jang, Kihwan Kim,
Yunheung Paek, and Brent Kang. 2017. KI-Mon ARM: A Hardware-assisted Event-
triggered Monitoring Platform for Mutable Kernel Object. IEEE Transactions on
Dependable and Secure Computing (2017).

Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and
Brent Byunghoon Kang. 2012. Vigilare: toward snoop-based kernel integrity
monitor. In Proceedings of the 2012 ACM conference on Computer and communica-
tions security. ACM, 28-37.

Nick L Petroni Jr and Michael Hicks. 2007. Automated detection of persistent
kernel control-flow attacks. In Proceedings of the 14th ACM conference on Computer
and communications security. ACM, 103-115.

Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox, Paul
England, Chris Fenner, Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,
et al. 2016. fTPM: A Software-Only Implementation of a TPM Chip. In USENIX
Security Symposium. 841-856.

He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. 2014. Trustdump:
Reliable memory acquisition on smartphones. In European Symposium on Research
in Computer Security. Springer, 202-218.

—_
&,

[3

4



	Abstract
	1 Introduction
	2 Design and Implementation of SeCore
	2.1 SeCore Boot Process
	2.2 Accessing Normal World Memory
	2.3 Continuous Extrospection

	3 Future Work
	4 Conclusion
	5 Acknowledgement
	References



