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A hybrid cloud is a cloud computing environment in which an organization provides
and manages some internal resources and has others provided externally. However, this
new environment could bring irretrievable losses to the clients due to a lack of integrity
verification mechanism for distributed data outsourcing. To support scalable service
and data migration, in this paper we address the construction of a collaborative integrity
verification mechanism in hybrid clouds where we consider the existence of multiple cloud
service providers to collaboratively store and maintain the clients’ data. We propose a
collaborative provable data possession scheme adopting the techniques of homomorphic
verifiable responses and hash index hierarchy. In addition, we articulate the performance
optimization mechanisms for our scheme and prove the security of our scheme based on
multi-prover zero-knowledge proof system, which can satisfy the properties of complete-
ness, knowledge soundness, and zero-knowledge. Our experiments also show that our
proposed solution only incurs a small constant amount of communications overhead.
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1. Introduction

Cloud computing has become a faster profit growth point in recent years by pro-
viding a comparably low-cost, scalable, location-independent platform for clients’
data. Although commercial cloud services have revolved around public clouds, the
growing interest of building private cloud on open-source cloud computing tools
allows local users to have a flexible and agile private infrastructure to run service
workloads within their administrative domains. Private clouds are not exclusive
for being public clouds, and they can also support a hybrid cloud model by sup-
plementing a local infrastructure with computing capacity from an external public
cloud. By using virtual infrastructure management (VIM),2 a hybrid cloud can
allow remote access to its resources over the Internet via remote interfaces, such as
the Web services interfaces that Amazon EC2 uses.

Usually, a hybrid cloud is a cloud computing environment in which an organi-
zation provides and manages some internal resources as well as external resources.
From the viewpoint of internal resource management, a hybrid cloud is different
from a multiple cloud environment, which usually refers to an open cloud archi-
tecture consisting of multiple public clouds. Therefore, a hybrid cloud puts more
emphasis on a cloud aggregation platform including private clouds and public
clouds, combining the features of availability, scalability, and low cost from pub-
lic clouds, and security from private clouds. For example, as shown in Fig. 1,
an organization, considered as a hybrid cloud, uses public cloud services, such as
Zoho and Amazon’s EC2, for general computing purposes while storing customers’
data within its own data centers, such as university health science center (Private
Cloud I) and medicinal research institute (Private Cloud II).3 Obviously, it is more
secure to store customers’ data in private clouds.
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Fig. 1. Types of cloud computing: private cloud, public cloud and hybrid cloud.
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As cloud computing has been rapidly adopted, the hybrid model will be more
prevalent for a number of reasons2: to provide clients with the same features found
in commercial public clouds; to provide a uniform and homogeneous view of virtual-
ized resources; to support configurable resource allocation policies to meet an orga-
nization’s specific goals (high availability, server consolidation to minimize power
usage, and so on); and to meet an organization’s changing resource needs. In par-
ticular, hybrid cloud also fulfills an organization’s security requirements, that is,
sensitive data is entirely controlled and retained by the enterprise.

With the growing popularity of clouds, the tools and technologies for hybrid
clouds are emerging recently, such as Platform VM Orchestrator,a VMware
vSphere,b and Ovirt.c They help users construct a comparably low-cost, scal-
able, location-independent platform for managing clients’ data. However, if such
an important platform is vulnerable to security attacks, it would bring irretrievable
losses to the clients. For example, confidential data in an enterprise’s private cloud
may be illegally accessed by using remote interfaces in hybrid cloud, or relevant
data and archives are lost or tampered with when they are transferred into an
uncertain storage pool outside the enterprise by an application in a hybrid cloud.
Therefore, it is indispensable for cloud service providers (CSPs) to provide secure
management techniques to ensure their storage services.

Provable data possession (PDP)4 is a probabilistic proof technique for a storage
provider to prove that clients’ data remains intact. In other words, clients can
fully recover their data and have confidence to use the recovered data. This creates
strong demand for seeking an effective solution to check if their data has been
tampered with or deleted without downloading the latest version of data. Various
PDP schemes have been recently proposed, such as Scalable PDP5 and Dynamic
PDP,6 to work in a publicly verifiable way so that users can employ their verification
protocol to prove the availability of the stored data. However, these schemes focus
on the PDP issues at untrusted servers (public clouds), and are not applicable for a
hybrid cloud environment due to the lack of support for heterogeneous multi-cloud
storages, as well as a privacy protection mechanism (see Sec. 2.3 for details).

In this paper, we address the problem of provable data possession in hybrid
clouds. By discussing the characteristics of hybrid clouds and analyzing security
drawbacks of some existing schemes, we indicate our main research objectives in
three aspects: high security, verification transparency and high performance. On
this basis, we first propose a verification framework for hybrid clouds along with
the description of three techniques adopted in our approach: (i) fragment structure,
(ii) hash index hierarchy (HIH), and (iii) homomorphic verifiable response (HVR).
We argue that it is possible to construct a collaborative PDP (CPDP) scheme

awww.platform.com/Products/platform-vm-orchestrator
bwww.vmware.com/products/vsphere
chttp://ovirt.org



November 26, 2012 13:24 WSPC/S0218-8430 111-IJCIS 1241001

168 Y. Zhu et al.

without compromising data privacy based on modern cryptographic techniques,
such as multi-prover zero-knowledge proof system (MP-ZKP).7

We then provide an effective construction of CPDP using homomorphic verifi-
able responses and hash index hierarchy. This construction realizes security against
data leakage attacks and tag forging attacks, considering transparent property for
clients to store and manage resources in hybrid clouds. This construction uses homo-
morphic property, on which the responses of clients’ challenges computed from mul-
tiple CSPs can be combined into a single response as the final result of hybrid clouds.
By using such a mechanism, clients can be convinced of data possession without
knowing geographical locations where their files reside. In addition, a new hash
index hierarchy is proposed to realize the client-oriented transparency measures to
store and manage clients’ resources in hybrid clouds.

We also evaluate the performance of our CPDP scheme. First, we provide a
brief security analysis of our scheme. We also analyze the performance of proba-
bilistic queries for detecting abnormal situations in a timely manner. This prob-
abilistic method also has the inherent benefit in reducing the computation and
communication overheads. In addition, we prove the security of our scheme based
on multi-prover zero-knowledge proof system, which can satisfy the properties of
completeness, knowledge soundness and zero-knowledge. In practical applications,
our optimization algorithm also provides an adaptive parameter selection for differ-
ent sizes of files (or clusters), which could ensure that the extra storage is optimal
for the verification process.

The rest of the paper is organized as follows. In Sec. 2, we address our research
motivation and research objectives. Section 3 discusses our framework and model of
integrity verification in hybrid clouds. We describe background techniques adopted
in our practical construction in Sec. 4. Section 5 describes the security and per-
formance analysis of our solution. We address the related work in Secs. 6 and 7
concludes this paper and discusses the future work.

2. Motivation and Objectives

In this section, we give an overview of our motivation and research objectives in
constructing collaborative PDP. Our motivation is based on following challenging
questions that need to be addressed in secure cloud storage, which also help us
define our objectives in this paper.

2.1. Why need integrity checking of data in clouds?

Cloud storage service has become a new profit growth point by providing a compa-
rably low-cost, scalable, location-independent platform for managing clients’ data.
However, data security is critical to such convenient storage services due to the
following reasons: cloud infrastructures are much more powerful and reliable than
personal computing devices but they are still facing all kinds of internal and exter-
nal threats; for the benefits of their own business, there exist various motivations
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for cloud service providers to behave unfaithfully toward cloud users; furthermore,
the behaviors of CSPs may not be known by cloud users, thus a dispute may be
raised even if this dispute may result from users’ own improper operations. There-
fore, it is necessary to explore various mechanisms for integrity, availability, and
confidentiality of data stored in clouds.

Data integrity verification is one of the most basic and critical techniques in
outsourced cloud storage. In cryptography, message authentication code (MAC) and
digital signature can be applied to verify data integrity and ownership. For example,
to sign data D, a data owner first produces a fix length string H = Hash(D)
through a hash function, and then signs it to compute a data tag S = Signsk (H)
by his/her private key. To verify, both the data and the tag (D,S) will be sent to
the verifier, and then the verifier checks that Verifypk (D,S) = True/False by using
a verification algorithm, where (pk , sk) is a key pair of the data owner. But this
process is not suitable for outsourced cloud storage due to the following reasons:

• The verification process requires to send back original data to the verifier. It is
only fit for short data, but it is obviously not possible for large amounts of data
due to higher transmission overheads; and
• The verification process cannot achieve integrity verification for a part of data,

but it is not fit for distributed cloud storage in which outsourced data may be
distributed to different physical storage devices or CSPs.8

Therefore, it is crucial for CSPs to offer an efficient verification mechanism for
solving the above-mentioned problems. This will bring the following advantages:
verification without download and verification for partial data.

2.2. Why need a new mechanism for ensuring data security

in hybrid clouds?

As mentioned previously, a hybrid cloud is an environment consisting of multiple
public clouds and private clouds. A hybrid cloud typically needs at least one private
cloud. The reason for the existence of private cloud is that it offers the greatest level
of security and control for enterprises’ sensitive data, hence security risks are less
as compared to those stored in public clouds. Ideally, a hybrid approach allows a
business to take advantage of the scalability and cost-effectiveness of a public cloud
environment, without exposing mission-critical applications and data to third-party
vulnerabilities.

In hybrid clouds, one of the core design principles is dynamic scalability, which
guarantees cloud storage services to handle growing amounts of application data in
a flexible manner. By employing the virtualization technique, such as VIM, hybrid
clouds can effectively provide dynamic scalability of service and data migration.
This kind of scalability is also particularly important for large enterprises taking
into account their existing substantial investments of infrastructure. Furthermore,
many organizations would prefer to keep sensitive data under their own control,
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Fig. 2. The cloud application for integrated data in hybrid clouds.

ensuring security requirements. For example, a client might integrate data and
scripts from multiple private or public providers into a large-size archive or a com-
plete application setting; or a cloud service might capture data from other services
in private clouds, but application scripts, intermediate data and results are executed
and stored in public clouds.9,10

We show such an example of collaborative computing in Fig. 2. Assume that a
cloud service, like a Web-based application on service-oriented architecture (SOA),
is constructed on Amazon’s EC2. The running of this service depends on the scripts
from Zoho, the documents from Facebook and Finance Co. In this example, all of
these integrated data, like documents and scripts, is called an application setting.
From a practical standpoint, this kind of application setting can be either a large file,
a database, or a set of files in an application system including softwares, Web pages,
snapshots, and so on. Obviously, this collaborative paradigm is more vulnerable to
various security attacks. For instance, an attacker can modify application softwares
or scripts, tamper with application data, or load a trojan into a snapshot of virtual
machine (VM) to compromise cloud applications. In order to mitigate these security
risks, the safest way is to verify the data integrity of application setting before the
application service is executed or the outsourced data is downloaded. In addition, an
easily overlooked problem is to avoid disclosure of sensitive data in the verification
process itself when this process is considered as public Daemons (like httpd, inetd,
and fmd).
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2.3. Are existing PDP schemes efficient for hybrid clouds?

As mentioned above, traditional cryptographic technologies based on Hash func-
tions and signature schemes11,12 cannot support the verification of data integrity
and availability of outsourced data without a local copy of data. It is evidently
impractical to download the whole data to verify data validation due to the expen-
siveness of communication, especially, for large-size files. Recently, several PDP
schemes are proposed to address this issue. Essentially, the PDP is an interactive
proof system between a CSP and a client because the client makes a false/true
decision for data possession without downloading data.

Existing PDP schemes mainly focus on integrity verification issues at untrusted
stores in single clouds, but they are not suitable for a hybrid cloud environment
since they were originally constructed based on a two-party interactive proof system
(TP-IPS). In cryptography, there exist some quite subtle differences between TP-
IPS and multi-party interactive proof system (MP-IPS). These differences restrict
the application of existing PDP scheme in hybrid clouds. For example, existing PDP
schemes usually employ three-move interactive mode: Commitment, Challenge, and
Response. In the first step, the CSPs need to select some random variables and sent
their commitments into the client. However, such random selections of variables are
independent, thus we cannot simply combine them into PDP scheme for a hybrid
cloud. Although it is an alternative way for multiple CSPs to generate random
variables by using Multi-Party Random Coin Tosses and Byzantine Agreement, this
requests a complex protocol to ensure the randomness and consistency of results
(among multiple parties). Likewise, some similar problems must be solved in other
steps.

On the other hand. If we do not consider the relationship among data stored in
deferent CSPs, existing PDP schemes can be used in a trivial way to realize data
integrity verification in a hybrid cloud. That is, a verifier (a client) must invoke
them repeatedly to check the integrity of data stored in each single cloud. This
means that the verifier must know the exact position of each data block in hybrid
clouds. Moreover, this process will consume higher communication bandwidth and
computation overheads at both the verifier side and the cloud sides.

In response to actual characteristics of storage services in a hybrid cloud, the
concerns to improve the existing PDP schemes are mainly from three aspects:

• How to design a more efficient PDP model for hybrid clouds to reduce storage
and network overheads;
• How to deal with heterogeneous storage in a hybrid cloud and enhance the trans-

parency of verification activities for the verifier; and
• How to provide an efficient sampling policy to help provide a more cost-effective

verification service.

Solving these problems will help improve the quality of PDP services, which can
not only timely detect abnormality, but also take up less resources, or rationally
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allocate resources. Hence, a new PDP scheme is desirable to accommodate these
application requirements from hybrid clouds.

2.4. Are existing PDP schemes secure enough for hybrid

cloud environments?

In hybrid clouds, a collaborative work model provides some mutual channels among
individual clouds. This kind of channels will no doubt increase the possibility of
malicious attacks. In particular, they also provide a possibility of unauthorized
access to data in a private cloud. This should be a deadly threat for hybrid cloud
environments because most of existing PDP schemes ignore the leakage problem of
verified data via the interactive process of the verification protocol in a PDP scheme.
Thus, when a public verification service does not have a strong security mechanism
to data protection, a malicious attacker could easily exploit such a service to obtain
private data. Such an attack is extremely dangerous to the confidential data of an
enterprise.

Even though existing PDP schemes have addressed various aspects such as pub-
lic verifiability,4 dynamics,6 scalability,5 and privacy preservation,13 we still need a
careful consideration to the following attacks.

• Data leakage attack : Through the interfaces of public clouds, various applications
in hybrid clouds are allowed to access data in private clouds, so a PDP service
(considered as a Daemon) undoubtedly provides a covert channel to access the
secret data in private clouds. Therefore, if a PDP scheme cannot resist against the
data leakage attacks, an adversary can easily obtain the entire data through an
interactive proof process. For instance, Attacks 1 and 3 described in Appendixes A
and B demonstrate that a verifier can get the stored data after running or wire-
tapping sufficient verification communications. It is obvious that such attacks
could significantly impact the privacy of outsourced data in clouds.
• Tag forgery attack : In hybrid clouds, an untrusted CSP has more opportunities to

induce a forgery attack, in which the CSP can cheat a verifier by generating a valid
tag for the tampered data. For example, Attacks 2 and 4 given in Appendixes A
and B show that a successful forgery attack can occur only if one of the following
cases is happened:

(a) Clients modify data blocks in a file;
(b) Clients insert and delete blocks repeatedly in a file;
(c) Clients reuse the same file name to store multiple different files.

2.5. Our objectives

To summarize the above discussions, we believe that it is very essential to develop an
efficient collaborative method for data integrity verification in hybrid cloud envi-
ronments. Furthermore, from the above-mentioned challenges, our objectives for
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checking integrity of outsourced data in hybrid clouds are as follows:

• Usability aspect : In the way of collaboration, a client should utilize the integrity
check in a distributed cloud storage system. Our scheme should conceal the details
of the storage to reduce the burden on clients;
• Security aspect : Our scheme should provide adequate security features to resist

some existing attacks, especially data leakage attack and tag forgery attack; and
• Performance aspect : Our scheme should have the lower communication and com-

putation overheads than non-cooperative solutions.

3. Framework and Model

In this section, we present our verification framework for hybrid clouds and a formal
definition of collaborative PDP. In order to guarantee security, we also define a
security model based on zero-knowledge interactive proof system.

3.1. Verification framework for hybrid clouds

Although PDP schemes evolved around public clouds offer a publicly accessible
remote interface to check and manage the tremendous amount of data, the majority
of today’s PDP schemes is incapable of satisfying such an inherent requirement of
hybrid clouds in the aspects of security, bandwidth and usability. To solve this
problem, we consider a hybrid cloud storage service as illustrated in Fig. 3.
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Fig. 3. Verification architecture for data integrity in hybrid clouds.
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In this architecture, we consider a data storage service in a hybrid cloud involv-
ing three different entities:

• Granted clients, who have large amount of data stored in a hybrid cloud and
have the right to access and manipulate these stored data;
• Cloud service providers (CSPs), who work together to provide data storage ser-

vice and have enough storage spaces and computation resources;
• Trusted third party (TTP), who is trusted to store verification parameters,

including index-hash table for integrated data (see Fig. 3), and offers the query
services for these parameters.

In Fig. 3, we present an index hash table to manage the application data aggre-
gated from multiple CSPs in a hybrid cloud. Moreover, some basic data items,
such as data block position, access domain, and hash value, should be added to
this table. In our scheme, one of the most important items is a cryptographic hash
value, which is used to compress the record itself and supports the data integrity
verification in collaborative PDP services. More importantly, this table is also used
to solve the heterogeneous storage problem (see Sec. 4.1).

To support this architecture, a cloud storage provider also needs to add
corresponding modules to implement collaborative PDP services. For example,
OpenNebula is an open source, virtual infrastructure manager that is integrated
with multiple virtual machine managers, transfer managers, and external cloud
providers. In Fig. 4, we describe such a cloud computing platform based on Open-
Nebula architecture,2 in which a service module of collaborative PDP is added into
cloud computing management platform (CCMP). This module is able to respond
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Fig. 4. Cloud computing platform for CPDP service based on OpenNebula architecture.
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to the PDP requests of TTP through cloud interfaces. In addition, a hash index
hierarchy (HIH), which is described in detail in Sec. 4.1, is used to provide a uni-
form and homogeneous view of virtualized resources in virtualization components.
For the sake of clarity, we use yellow color to indicate the changes from the original
OpenNebula architecture.

In this architecture, we consider the existence of multiple CSPs to collabora-
tively store and maintain clients’ data. Moreover, a collaborative PDP is used to
verify the integrity and availability of their stored data in CSPs. The verification
flowchart is described as follows: First, the client (data owner) uses the secret key
to pre-process a file, which consists of a collection of n blocks, generates a set of
public verification information that is stored in TTP, transmits the file and some
verification tags to CSPs, and may delete its local copy; then, by using a verifica-
tion protocol for collaborative PDP, the clients can issue a challenge for one CSP to
check the integrity and availability of outsourced data in terms of public verification
information stored in TTP.

3.2. Definition of collaborative PDP

In order to prove the integrity of data stored in hybrid clouds, we define a framework
for collaborative provable data possession (CPDP) based on multi-prover interactive
proof system (MP-IPS)14,15:

Definition 3.1 (Collaborative-PDP). A collaborative provable data possession
scheme S is a collection of two algorithms and a multi-prover interactive proof
system, S = (K, T ,P):

(i) KeyGen(1κ): takes a security parameter κ as input, and returns a secret key
sk or a public-secret keypair (pk, sk);

(ii) T agGen(sk , F,P): takes as inputs a secret key sk, a file F , and a set of cloud
storage providers P = {Pk}, and returns the triples (ζ, ψ, σ), where ζ is the
secret of tags, ψ = (u,H) is a set of verification parameters u and an index
hierarchy H for F , σ = {σ(k)}Pk∈P denotes a set of all tags, σ(k) is the tags of
the fraction F (k) of F in Pk;

(iii) Proof (P , V ): is a protocol of proof of data possession between the CSPs (P =
{Pk}) and a verifier (V), that is, 〈

∑
Pk∈P Pk(F (k), σ(k)), V 〉(pk, ψ), where each

Pk takes as input a file F (k) and a set of tags σ(k), and a public key pk and a
set of public parameters ψ is the common input between P and V . At the end
of the protocol running, V returns a bit {0 | 1} denoting false and true.

where,
∑

Pk∈P denotes the collaborative computing in Pk ∈ P .

To realize the CPDP, a trivial way is to check the data stored in each cloud one
by one. However, it would cause significant cost growth in terms of communication
and computation overheads. It is obviously unreasonable to adopt such a primitive
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Table 1. The signal and its explanation.

Sig. Repression

n the number of blocks in a file;
s the number of sectors in each block;
t the number of index coefficient pairs in a query;
c the number of clouds to store a file;

F the file with n× s sectors, i.e. F = {mi,j}i∈[1,n]
j∈[1,s]

;

σ the set of tags, i.e. σ = {σi}i∈[1,n];
Q the set of index-coefficient pairs, i.e. Q = {(i, vi)};
θ the response for the challenge Q.

approach that diminishes the advantages of cloud storage: scaling arbitrarily up and
down on-demand.16 For the sake of clarity, we list some used signals in Table 1.

3.3. Security model for collaborative PDP

In cryptography, the CPDP scheme is a multi-prover interactive proof system (MP-
IPS) in nature. According to the security definition of MP-IPS, we require that the
CPDP scheme satisfies the following security requirements:

Definition 3.2. A pair of interactive machines (
∑

Pk∈P Pk, V ) is called an available
provable data possession for a file F if P = {Pk} is a collection of (unbounded)
probabilistic algorithms, V is a deterministic polynomial-time algorithm, and the
following conditions hold for some polynomial p1(·), p2(·), and all s ∈ N:

(i) Completeness: For every σ ∈ TagGen(sk, F ),

Pr

[〈 ∑
Pk∈P

Pk(F (k), σ(k)), V

〉
(pk, ψ) = 1

]
≥ 1− 1/p1(κ); (1)

(ii) Soundness: For every σ∗ �∈ TagGen(sk, F ), every interactive machine P ∗
k ∈ P ,

Pr



〈 ∑

P∗
k ∈P

P ∗
k (F (k), σ(k)∗), V

〉
(pk, ψ) = 1


 ≤ 1/p2(κ); (2)

where, p1(·) and p2(·) denote two polynomials,d and κ is a security parameter used
in KeyGen(1κ).

The standard definition of proofs of knowledge was proposed by Bellare and
Goldreich.14 Here, the knowledge soundness could be regarded as the stricter def-
inition of security of tag information, e.g. the forging tag attack. This means that
the prover can forge file tags by means of a knowledge extractor M if soundness
property does not hold.

dThe function 1/p1(κ) is called the completeness error, and the function 1/p2(κ) is called the
soundness error. For non-triviality, we require 1/p1(κ) + 1/p2(κ) ≤ 1 − 1/poly (κ).
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For a private cloud, we concerned more about the disclosure of private informa-
tion in the verification process. It is easy to find that data blocks and their tags
could be obtained by the verifier in some existing schemes. In order to solve this
problem, we introduce Zero-Knowledge notion into the CPDP scheme, as follows:

Definition 3.3 (Zero-knowledge). An interactive proof system for provable data
possession problem is computational zero knowledge if there exists a probabilistic
polynomial-time algorithm S∗ (call a simulator) such that for every probabilistic
polynomial-time algorithmD, for every polynomial p(·), and for all sufficiently large
s, it holds that∣∣∣∣∣∣∣∣

Pr[D(pk, ψ, S∗(pk, ψ)) = 1]

−Pr

[
D

(
pk, ψ,

〈∑
Pk∈P

Pk(F (k), σ(k)), V ∗
〉

(pk, ψ)

)
= 1

]
∣∣∣∣∣∣∣∣
≤ 1/p(s),

where, S∗(pk, ψ) denotes the output of simulator S. That is, for all σ ∈ TagGen
(sk, F ), the ensembles SO(F )(pk, ψ) and 〈

∑
Pk∈P Pk(F (k), σ(k)), V ∗〉(pk, ψ)e are

computationally indistinguishable.

Actually, zero-knowledge is a property that captures P ’s robustness against
attempts to gain knowledge by interacting with it. For the PDP scheme, we use the
zero-knowledge property to the security of data blocks and signature tags.

4. Main Techniques

In this section, we propose a new cooperative provable data possession scheme for
hybrid clouds. Concretely speaking, this scheme can meet the following require-
ments: conceal the details of the storage, which is not necessary to be known by
users in the verification process; and ensure that the verification does not reveal
any information, which is of particular importance for sensitive data. We set up our
system using bilinear pairings proposed by Boneh and Franklin.17 We define this
kind of bilinear pairings in the following bilinear map group system:

Definition 4.1 (Bilinear Map Group System). A bilinear map group system
is a tuple S = 〈p,G,GT , e〉 composed of the following objects: G and GT are two
multiplicative groups using elliptic curve conventions with a large prime order p.
The function e is a computable bilinear map e : G × G → GT with the following
properties: for any G,H ∈ G and all a, b ∈ Zp, we have

• Bilinearity: e([a]G, [b]H) = e(G,H)ab;
• Non-degeneracy: e(G,H) �= 1 unless G or H = 1; and
• Computability: e(G,H) is efficiently computable.

eThe output of the interactive machine V ∗ after interacting with
P

Pk∈P Pk(F (k), σ(k)), on com-

mon input (pk, ψ).



November 26, 2012 13:24 WSPC/S0218-8430 111-IJCIS 1241001

178 Y. Zhu et al.

In the remainder of this section, we first introduce the execution environment of
our scheme, including hash index hierarchy and outsourced data storage structure.
Then, we give our CPDP scheme in details, and discuss the validity of the scheme.

4.1. Hash index hierarchy for collaborative PDP

As a virtualization approach, we introduce a simple index-hash table to record the
status and change of file blocks, as well as generate the Hash value of block in the
verification process (see an example in Fig. 3). The structure of our index-hash
table is similar to that of file block allocation table in file systems. The index-hash
table consists of serial number, block number, version number, random integer, and
so on. Different from the common index table, we must assure that all records in
this kind of table differ from one another to prevent the forgery of data blocks and
tags. In practical applications, it should been constructed into the virtualization
infrastructure of cloud-based storage service.2 In addition, the index-hash table
can be used to solve heterogeneous storage problem because it is irrelevant to the
type of storage systems in a hybrid cloud.

As an extension of name space in data clustering,18 a representative architecture
for data storage in hybrid clouds is illustrated as follows: this architecture is a
hierarchical structure H on three layers to represent the relationship among all
blocks for stored resources. Three layers can be described as follows:

• First-Layer (Express Layer): offer an abstract representation of the stored
resources;
• Second-Layer (Service Layer): immediately offer and manage cloud storage

services; and
• Third-Layer (Storage Layer): practicably realize data storage on many phys-

ical devices.

This kind of architecture is a nature representation of file storage. We utilize
this simple hierarchy to organize multiple CSP services, including private clouds
or public clouds. In practical applications, this architecture can be constructed
into a virtualization infrastructure of cloud-based storage service. In Fig. 5, we
show an example of mapping three-layer structure into Hadoop distributed file
system (HDFS),19 which is a distributed, scalable, and portable file system. HDFS’
architecture is composed of NameNode and DataNode, where NameNode maps a
file name to a set of indexes of blocks and DataNode indeed stores data blocks.
Obviously, the Express layer corresponds to the NameNode and the Service layer
corresponds to secondary NameNode in each CSP. Finally, the Storage layer can
be used to represent the structure of DataNode. Hence, based on this architecture,
it becomes possible for the CPDP scheme to support actual storage systems. Also,
it lays a foundation for replacing the common checksum algorithm with the CPDP
scheme to implement the data integrity verification. It is worth pointing out that
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Fig. 5. The three-layer hierarchical structure over name space and data nodes.

our architecture is adaptable for the other cloud storage systems, such as Google
File System (GFS),20 Amazon S3 File System, and CloudStore.

Based on this hierarchical structure, we define a new index-hash table which is
a data structure that uses a hash function to map data identifying values, known
as indexes (e.g. file name, CSP server name, block number, and version number),
to some fix-size (unique) feature values. These feature values, used in our CPDP
construction, are generated by a collision-resistant hash function (also fixed-length
compression function). Let H = {Hk} be a family of hash functions Hk : {0, 1}n →
{0, 1}∗ indexed by k ∈ K, where K is the key space. We have the following definition:

Definition 4.2 (Collision-Resistant Hash). A hash family H is (t, ε)-collision-
resistant if no t-time adversary has advantage at least ε in breaking collision-
resistance of H, that is, for every probabilistic polynomial-time algorithm A,

Pr[A(k) = (m0,m1) : m0 �= m1, Hk(m0) = Hk(m1)] ≥ ε.

where the probability is over the random choices of k ∈ K and the random bits
chosen in A.

Given a hash function Hk(·), we make use of this architecture to construct a
Hash Index Hierarchy H, which is used to replace the common hash function in
PDP scheme, as follows:

• Express layer : given s random {τi}si=1 and the file name FN , sets ξ(1) =
HPs

i=1 τi
(“FN”) and makes it public for verification but makes {τi}si=1 secret;

• Service layer : given the ξ(1) and the cloud name CNk, sets ξ(2)k = Hξ(1)(“CNk”);
• Storage layer : given the ξ(2), a block number i, and its index record χi =

“Bi‖Vi‖Ri”, sets ξ(3)i,k = H
ξ
(2)
k

(χi),f where Bi is the sequence number of block, Ri

fThe index record is used to support dynamic data operations.
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is the version number of updates for this block, and Ri is a random integer to
avoid collision.

To meet this change, the index table χ in the CPDP scheme needs to increase a
new column Ci to record the serial number of CSP, that stores the ith block. By
using this structure, it is obvious that our CPDP scheme can also support dynamic
data operations.

The above structure can be readily adopted into MAC-based, ECC or RSA
schemes.4,21 These schemes, built from collision-resistance signatures and the ran-
dom oracle model, have the shortest query and response with public verifiability.
They have some common characters to implement the CPDP framework in hybrid
clouds: (i) the file is split into n× s sectors and each block (s sectors) corresponds
to a tag, so that the storage of signature tags can be reduced with increase of s;
(ii) the verifier can verify the integrity of file in random sampling approach, which
is of utmost importance for large or huge files; (iii) these schemes rely on homo-
morphic properties to aggregate the data and tags into a constant size response,
which minimizes network communication; and (iv) the hierarchy structure provides
a virtualization manner to conceal the storage details of multiple CSPs.

4.2. Outsourced data storage structure

In the storage layer, we define a common fragment structure that provides proba-
bilistic verification of data integrity for outsourced storage. The fragment structure
is a data structure that maintains a set of block-tag pairs, allowing searches, checks
and updates in O(1) time. An instance for this structure which is used in this
scheme is showed in the storage layer: an outsourced file F is split into n blocks
{m1,m2, . . . ,mn}, and each block mi is split into s sectors {mi,1,mi,2, . . . ,mi,s}.
The fragment structure consists of n block-tag pair (mi, σi), where σi is a signature
tag of block mi generated by some owner’s secrets τ = (τ1, τ2, . . . , τs). The multi-
sector strategy is to improve the storage and verification efficiency. For example,
for block length |mi| and signature length |σi|, the rate of signature-message is
|σi|
|mi| = |σi|

s|mi,j | if each block mi is split into s sectors. It is obvious that as s becomes
larger, higher encoding efficiency (rate) is achieved for the storage, communication,
and verification. In addition, the data owner can choose different secrets τ for each
file from the security point of view, but we expect that our CPDP scheme is secure
enough even if the data owner only relies on such a secret τ to sign all his/her files.

Based on this fragment structure and hash index hierarchy, we propose a con-
struction of CPDP scheme with KeyGen and TagGen algorithms, as follows:

• KeyGen(1κ): Let S = (p,G,GT , e) be a bilinear map group system with ran-
domly selected generators g, h ∈ G, where G,GT are two bilinear groups of a
large prime order p, |p| = O(κ). Makes a hash function Hk(·) public.

(a) For a CSP Pk ∈ P , chooses a random number δk ∈R Zp and computes
S = gδk ∈ G. Thus, skk = δk and pkk = (g, Sk).
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(b) For a cloud client (data owner), chooses two random numbers α, β ∈R Zp

and sets sku = (α, β) and pku = (g, h,H1 = hα, H2 = hβ).

• TagGen(sk, F,P): Splits F into n×s sectors {mi,j}i∈[1,n],j∈[1,s] ∈ Zn×s
p . Chooses

s random τ1, . . . , τs ∈ Zp as the secret of this file and computes ui = gτi ∈ G for
i ∈ [1, s]. Constructs the index table χ = {χi}ni=1 and fills out the record χi

g in
χ for i ∈ [1, n], then calculates the tag for each block mi as




ξ(1) ← HPs
i=1 τi

(“FN”), ξ
(2)
k ← Hξ(1)(“CNk”),

ξ
(3)
i,k ← H

ξ
(2)
k

(χi), σi,k ← (ξ(3)i,k )α ·


 s∏

j=1

u
mi,j

j




β

,

where Fn is the file name and Ck is the CSP name of Pk ∈ P . And then stores
ψ = (u, ξ(1), χ) into TTP, and σk = {(mi, σi,j)}∀j=k to Pk ∈ P , where u =
(u1, . . . , us). Finally, the data owner saves the secret ζ = (τ1, . . . , τs).

Note that, each cloud service provider Pk in hybrid cloud is assigned a public–
private key pair (pkk, skk) for any Pk ∈ P in order to achieve identity authentication
and secure communication.

In order to check data integrity, the fragment structure implements proba-
bilistic verification, as follows: given a random chosen challenge (or query) Q =
{(i, vi)}i∈RI , where I is a subset of the block indices and vi is a random coef-
ficient. There exists an efficient algorithm to produce a constant-size response
(µ1, µ2, . . . , µs, σ

′), where µi comes from all {mk,i, vk}k∈I and σ′ is from all
{σk, vk}k∈I . This kind of probabilistic verification property will bring convenience
to the development of our CPDP verification protocol.

4.3. Collaborative provable data possession

According to the above-mentioned architecture, four different network entities can
be identified as follows: the verifier (V), the trusted third party (TTP), the organizer
(O), and some cloud service providers (CSPs) in a hybrid cloud P = {Pi}i∈[1,c].
The organizer is an entity that directly contacts with the verifier. Moreover, it can
initiate and organize the verification process. Often, the organizer is an independent
server or a certain CSP in P . In our scheme, the verification is performed by a
five-move interactive proof protocol showed in Fig. 6: (i) the organizer initiates the
protocol and sends a commitment to the verifier; (ii) the verifier returns a challenge
set of random index-coefficient pairs Q to the organizer; (iii) the organizer relays
them into each Pi in P according to the exact position of each data block; (iv) each

gFor χi = “Bi, Vi, Ri” in Sec. 4.1, we can set χi = (Bi = i, Vi = 1, Ri ∈R {0, 1}∗) at initial stage
of CPDP scheme.
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Fig. 6. The flowchart of verification process in our CPDP scheme.

Pi returns its response of challenge to the organizer; (v) the organizer synthesizes a
final response from these responses and sends it to the verifier. The above process
would guarantee that the verifier accesses files without knowing on which CSPs or
in what geographical locations their files reside.

We describe the details of verification protocol as follows:

• Proof(P , V ): Let O be an organizer in hybrid cloud P = {Pi}i∈[1,c]. This is a
five-move protocol between Provers (P) and Verifier (V ) with the common input
(pk, ψ), which is stored in TTP. The protocol can be described as:

(a) Commitment(O → V ): O chooses a random γ ∈ Zp and generates H ′
1 =

Hγ
1 , H ′

2 = Hγ
2 , sends c = (H ′

1, H
′
2) to V ;

(b) Challenge1(O ← V ): V chooses a set of challenge index coefficient pairs
Q = {(i, vi)}i∈I and sends Q to O;

(c) Challenge2(P ← O): O forwards Qk = {(i, vi)}mi∈Pk
∈ Q along to each Pk

in P ;
(d) Response1(P → O): Pk chooses a random rk ∈ Zp and s random λj,k ∈ Zp

for j ∈ [1, s], and calculates the response




σ′
k ← Srk

k ·
∏

(i,vi)∈Qk

σvi

i,k ∈ G,

µj,k ← λj,k +
∑

(i,vi)∈Qk

vi ·mi,j ∈ Z,

πj,k ← u
λj,k

j ∈ G,

where µk = {µj,k}j∈[1,s] and πk = {πj,k}j∈[1,s]. Let Rk ← grk ∈ G, each Pk

sends θk = (πk, σ
′
k, µk, Rk) to O;
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(e) Response2(O→ V ): After receiving all responses from {Pi}i∈[1,c], O aggre-
gates {θk}Pk∈P into a common θ as

σ′ ←
( ∏

Pk∈P
σ′

k · R−δk

k

)γ

, µ′
j ←

∑
Pk∈P

µj,k, π′
j ←

∏
Pk∈P

πj,k.

Let µ′ = {µ′
j}j∈[1,s] and π′ = {π′

i}i∈[1,s]. O sends θ = (π′, σ′, µ′) to V .

Verification: Finally, the verifier V can check that the response was correctly
formed by checking that

e(σ′, h) = e


 ∏

(i,vi)∈Q

H
ξ
(2)
k

(χi)vi , H ′
1


 · e


 s∏

j=1

u
µ′

j

j · π′
j
−1
, H ′

2


 .

Remark. Regardless of the length of verified files, the verifier executes the ver-
ification protocol with fix-length communication overheads (c,Q, θ) and constant
computational overheads (just the last equation). Therefore, almost all computa-
tional tasks are completed by the organizer and the CSPs.

4.4. Homomorphic verifiable response for collaborative PDP

In this subsection, we describe the correctness of our proposed scheme based on
mathematic homomorphism. A homomorphism is a map f : P → Q between two
groups such that f(g1⊕ g2) = f(g1)⊗ f(g2) for all g1, g2 ∈ P, where ⊕ denotes the
operation in P and ⊗ denotes the operation in Q.

This notation has been used to define Homomorphic Verifiable Tags (HVTs)4:

Definition 4.3 (Homomorphic Verifiable Tags). Given two values σi and σj

for two messagemi and mj , anyone can combine them into a value σ′ corresponding
to the sum of the message mi +mj .

In our construction, this kind of homomorphism property is converted into more
complex form because each block mi is split into s sectors. That is, the sum of the
messagemi+mj is replaced into

∑s
e=1 τe(mi,e+mj,e), wheremk = {mk,1, . . . ,mk,s}

and τ1, . . . , τs are some unknown secrets. Therefore, given the definition of signature
σi,k = (ξ(3)i,k )α · (

∏s
j=1 u

mi,j

j )β = (ξ(3)i,k )α · (g
Ps

j=1 τjmi,j )β , the block’s signature has
the homomorphism property, that is,

σi,k · σj,k = (ξ(3)i,k · ξ
(3)
j,k )α ·

(
s∏

e=1

umi,e+mj,e
e

)β

= (ξ(3)i,k · ξ
(3)
j,k )α · (g

Ps
e=1 τe(mi,e+mj,e))β .
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Similarly, for a certain CSP Pk, all block’s signatures {σi,k} can be aggregated
into a signature by using the equation

σ′
k = Srk

k ·
∏

(i,vi)∈Qk

σvi

i,k = Srk

k ·


 ∏

(i,vi)∈Qk

ξ
(3)vi

i,k




α

· (g
Ps

e=1 τe·
P

(i,vi)∈Qk
mi,evi)β .

When provable data possession is considered as a challenge–response proto-
col, we extend this notation to the concept of a homomorphic verifiable responses
(HVRs), which is used to integrate multiple responses from the different CSPs in
collaborative PDP scheme as follows:

Definition 4.4 (Homomorphic Verifiable Responses). A response is called
HVRs in PDP protocol, if given two responses θi and θj for two challenges Qi

and Qj from two CSPs, there exists an efficient algorithm to combine them into a
response θ corresponding to the sum of the challenges Qi

⋃
Qj.

Homomorphic verifiable response is the key technique of collaborative PDP
because it not only reduces the communication bandwidth, but also conceals the
location of outsourced data in hybrid clouds. As we follow a similar method in
the previous analysis, the responses (also considered as signatures), obtained from
different CSPs, can be further aggregated into a response in terms of

σ′ =

( ∏
Pk∈P

σ′
k

Rδk

k

)γ

=

( ∏
Pk∈P

Srk

k ·
∏

(i,vi)∈Qk
σvi

i,k

Rδk

k

)γ

=


 ∏

Pk∈P

∏
(i,vi)∈Qk

σvi

i,k




γ

=
∏

(i,vi)∈Q

σvi·γ
i ,

where, Srk

k = gδk·rk = Rδk

k . Similarly, for j ∈ [1, s], the file blocks are also aggregated
into s values {µ′

1, . . . , µ
′
s}, in which each value µ′

j can be defined as

µ′
j =

∑
Pk∈P

µj,k =
∑

Pk∈P


λj,k +

∑
(i,vi)∈Qk

vi ·mi,j




=
∑

Pk∈P
λj,k +

∑
Pk∈P

∑
(i,vi)∈Qk

vi ·mi,j

= λj +
∑

(i,vi)∈Q

vi ·mi,j ,

where λj is an unknown secret value for the verifier, and all values {λ1, . . . , λs} are
aggregated into a commitment by using the equation

π′
j =

∏
Pk∈P

πj,k =
∏

Pk∈P
u

λj,k

j = u

P
Pk∈P λj,k

j = u
λj

j .
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Finally, according to the above-mentioned responses, the final verification equa-
tion can be elaborated as follows:

e(σ′, h) = e


 ∏

(i,vi)∈Q

(ξ(3)i )vi , h




γ·α

· e(g, h)γ·β P
(i,vi)∈Q

Ps
j=1 τj·vi·mi,j

= e


 ∏

(i,vi)∈Q

(ξ(3)i )vi , hα·γ


 · e


 s∏

j=1

u
γ·P(i,vi)∈Q vi·mi,j

j , hβ




= e


 ∏

(i,vi)∈Q

(ξ(3)i )vi , hα·γ


 · s∏

j=1

e(u
µ′

j−λj

j , hβ)

= e


 ∏

(i,vi)∈Q

H
ξ
(2)
k

(χi)vi , H ′
1


 · e


 s∏

j=1

u
µ′

j

j · π′
j
−1
, H ′

2


 .

This equation means that our CPDP scheme is an efficient interactive proof system.

5. Security and Performance Analysis

In this section, we first give a brief security analysis of our CPDP construction.
This analysis is directly derived from security requirements of multi-prover zero-
knowledge proof system (MP-ZKPS). Next, we analyze the performance of CPDP
scheme from the efficiency point of view of probabilistic verification. Finally, to
validate the effectiveness of our scheme, we introduce a prototype of CPDP-based
audit system and present experimental results.

5.1. Security analysis for CPDP scheme

The collaborate integrity verification for distrusted outsourced data, in essence,
is a multi-prover interactive proof system (IPS), so that the correspondence con-
struction should satisfy the security requirements of IPS. Moreover, in order to
ensure the security of verified data, this kind of construction is also a multi-prover
zero-knowledge proof (MP-ZKP) system,7,15 which can be considered as an exten-
sion of the notion of an IPS. Roughly speaking, the scenario of MPZKP is that
a polynomial-time bounded verifier interacts with several provers whose computa-
tional power is unlimited. Given an assertion L, such a system satisfies following
three properties: (i) Completeness: whenever x ∈ L, there exists a strategy for
provers that convinces the verifier that this is the case; (ii) Soundness: whenever
x �∈ L, whatever strategy the provers employ, they will not convince the verifier that
x ∈ L; (iii) Zero-knowledge: no cheating verifier can learn anything other than the
veracity of the statement. Since this construction is directly derived from MPZKP
model, the soundness and zero-knowledge properties can protect our construction
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from various attacks as follows:

• Security for tag forging attack: The soundness means that it is infeasible to
fool the verifier into accepting false statements. It is also regarded as a stricter
notion of unforgeability for the file tags. To be exact, soundness is defined as fol-
lows: for every “invalid” tag σ∗ �∈ TagGen(sk, F ), there does exist an interactive
machine P ∗ which can pass verification with any verifier V ∗ with noticeable prob-
ability. In order to prove the non-existence of P ∗, to the contrary, we can make
use of P ∗ to construct a knowledge extractor M, which gets the common input
(pk, ψ) and rewindable black-box access to P ∗ and attempts to break the compu-
tation Diffie–Hellman (CDH) assumption in G: givenG,G1 = Ga, G2 = Gb ∈R G,
output Gab ∈ G. This means that the prover cannot forge the file tags or tamper
with the data if soundness property holds.
• Security for data leakage attack: In order to protect the confidentiality of the

checked data, we are more concerned about the leakage of private information in
the verification process. In Sec. 2.4, we have shown that data blocks and their tags
could be obtained by the verifier in some existing schemes. To solve this problem,
we introduce zero-knowledge property into our construction. First, randomness is
adopted into the CSP’s response in order to resist Attack 2 and 4 in Appendixes A
and B, i.e. the random integer λj,k is adopted into the response µj,k, i.e. µj,k =
λj,k +

∑
(i,vi)∈Qk

vi · mi,j . This means that the cheating verifier cannot obtain
mi,j from µj,k because he does not know the random integer λj,k. At the same
time, a random integer γ is also introduced to randomize the verification tag σ,
i.e. σ′ ← (

∏
Pk∈P σ

′
k ·R−s

k )γ . Thus, the tag σ cannot reveal to the cheating verifier
in terms of randomness.

Based on this idea, we need to prove the following theorem according to the
formal definition of zero-knowledge, in which every cheating verifier has some sim-
ulator that, given only the statement to be proven (and no access to the prover),
can produce a transcript that “looks like” an interaction between the honest
prover and the cheating verifier. Actually, zero-knowledge is a property that cap-
tures (private or public) CSP’s robustness against attempts to gain knowledge
by interacting with it. For our construction, we make use of the zero-knowledge
property to guarantee the security of data blocks and signature tags.

5.2. Performance analysis of probabilistic verification

In our construction, the integrity verification achieves the detection of CSP servers
misbehavior in a random sampling mode (called probabilistic verification) in order
to reduce the workload on the server. In the probabilistic verification of common
PDP scheme (which involves one CSP), the detection probability P of disrupted
blocks is an important parameter to guarantee that these blocks can be detected
in time. Assume the CSP modifies e blocks out of the n-block file. The probability
of disrupted blocks is ρb = e

n . Let t be the number of queried blocks for a challenge
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in the verification protocol. We have detection probability

P (ρb, t) = 1−
(
n− e
n

)t

= 1− (1− ρb)t.

Hence, the number of queried blocks is t = log(1−P )
log(1−ρb)

≈ P ·n
e for a sufficiently large

n.h This means that the number of queried blocks t is directly proportional to the
total number of file blocks n for the constant P and e.

For a PDP scheme with fragment structure, given a file with sz = n · s sectors
and the probability ρ of sector corruption, the detection probability of verification
protocol has P ≥ 1− (1− ρ)sz·ω, where ω denotes the sampling probability in the
verification protocol. We can obtain this result as follows: because ρb ≥ 1− (1−ρ)s

is the probability of block corruption with s sectors in common PDP scheme, the
verifier can detect block errors with probability P ≥ 1−(1−ρb)t ≥ 1−((1−ρ)s)n·ω =
1− (1− ρ)sz·ω for a challenge with t = n · ω index-coefficient pairs.

Next, we extend the one-CSP PDP scheme into multi-CSPs CPDP scheme as
follows: given a file with sz = n ·s sectors and ω denotes the sampling probability in
the verification protocol. For a hybrid cloud P , the detection probability of CPDP
scheme has

P (sz, {ρk, rk}Pk∈P , ω) ≥ 1−
∏

Pk∈P
((1 − ρk)s)n·rk·ω

= 1−
∏

Pk∈P
(1− ρk)sz·rk·ω,

where rk denotes the proportion of data blocks in the kth CSP, ρk denotes the
probability of file corruption in the kth CSP, and rk ·ω denotes the possible number
of blocks queried by the verifier in the kth CSP. Furthermore, we observe the ratio
of queried blocks in the total file blocks w under different detection probabilities.
Based on above analysis, it is easy to find that this ratio holds the equation

w =
log(1 − P )

sz ·
∑

Pk∈P rk · log(1− ρk)
.

However, the estimation of w is not an accurate measurement.
In most cases, we adopt the probability of disrupted blocks to describe the

possibility of data loss, damage, forgery or unauthorized changes. When this prob-
ability ρb is a constant probability, the verifier can detect severe misbehavior with
a certain probability P by asking proof for a constant amount of blocks for PDP or
t = log(1−P )

s·PPk∈P rk·log(1−ρk) for CPDP, independently of the total number of file blocks.4

5.3. CPDP for integrity audit services

We apply our collaborative PDP scheme to construct an audit system architecture
for outsourced data in hybrid clouds by replacing TTP with a third party auditor

hIn terms of (1 − e
n

)t = 1 − e·t
n

, we have P = 1 − (1 − e·t
n

) = e·t
n

.



November 26, 2012 13:24 WSPC/S0218-8430 111-IJCIS 1241001

188 Y. Zhu et al.

(TPA) as shown in Fig. 3. In this architecture, data owners and granted clients
need to dynamically interact with CSP to access or update their data for various
application purposes. However, we neither assume that CSP is trusted to guarantee
the security of stored data, nor assume that data owners have the ability to collect
the evidence of the CSP’s fault after errors have been found. Hence TPA, as a trust
third party (TTP), is used to ensure the storage security of outsourced data. We
assume the TPA is reliable and independent, and thus has no incentive to collude
with either CSPs or users during the auditing process.

• TPA should be able to make regular checks on the integrity and availability of
these delegated data at appropriate intervals;
• TPA should be able to organize, manage, and maintain the outsourced data

instead of data owners, and support dynamic data operations for the granted
user;
• TPA should be able to take the evidences for the disputes about the inconsistency

of data in terms of authentic records for all data operations.

To enable privacy-preserving public auditing for cloud data storage under this
architecture, our protocol design should achieve following security and performance
guarantee:

• Public auditability: to allow TPA (or the other clients with help of TPA) to
verify the correctness of the cloud data on demand without retrieving a copy of
the whole data or introducing additional online burden to cloud users;
• Verification correctness: to ensure there exists no cheating CSP that can pass

the audit from TPA without indeed storing users’ data intact;
• Verification transparency: to enable TPA with secure and efficient auditing

capability to cope with auditing delegations from possibly large number of dif-
ferent CSPs simultaneously;
• Privacy-preserving: to ensure that there exists no way for TPA to derive users’

data from the information collected during the auditing process; and
• Lightweight: to allow TPA to perform auditing with minimum storage, commu-

nication and computation overhead, and to support batch auditing with a long
enough period.

To validate the effectiveness and efficiency of our proposed approach, we have
implemented a prototype of an audit system based on our proposed solution. We
simulate the audit service and the storage service by using two local IBM servers
with two Intel Core 2 processors at 2.16GHz and 500M RAM running Windows
Server 2003. These servers were connected via 250MB/s of network bandwidth. Our
audit scheme was also deployed in these servers. Using GMP and PBC libraries,
we have implemented a cryptographic library upon which our scheme can be con-
structed. This C library contains approximately 5200 lines of codes and has been
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Fig. 7. An example of hash index hierarchy in Hadoop distributed file system (HDFS).

tested on Windows and Linux platforms. The elliptic curve utilized in the experi-
ment is a MNT curve, with base field size of 160 bits and the embedding degree 6.
The security level is chosen to be 80 bit, which means |p| = 160.

More importantly, we incorporated this prototype on CPDP scheme into a virtu-
alization infrastructure of cloud-based storage service.2 In Fig. 7, we show an exam-
ple of Hadoop distributed file system (HDFS),i which a distributed, scalable, and
portable file system.19 HDFS’ architecture is composed of NameNode and DataN-
ode, where NameNode maps a file name to a set of indexes of blocks and DataNode
indeed stores data blocks. To support the CPDP, the index-hash table and the
metadata of NameNode should be integrated together to provide an enquiry ser-
vice for the hash value ξ(3)i,k or index-hash record χi. Based on the hash value, the
clients can implement the verification protocol via CPDP services. Hence, it is easy
to replace the checksum methods with the CPDP scheme for anomaly detection in
current HDFS.

In our experiments, we maintained a simple global Index-Hash table to man-
age the whole file in a hybrid cloud. The Index-Hash table is defined as follows:
χi = (BlkID: 16-bit, Pst: 20-bit, Property: 4-bit, Hash: 40-bit), where BlkID is used
to store the order number of block, Pst is to store (CloudNo:4-bit, BlkNo:16-bit),
Property is to store some property values each of which is denoted by one bit, and
Hash is to store ξ(3)i,k which is computed from a collision-resistant hash function.
When the length of each block is 5K Bytes, the radio of storage is 10/5K = 0.2%.
For a 10MB file, the storage of table is 20K Bytes. In our experiments we do not

iHadoop can enable applications to work with thousands of nodes and petabytes of data, and it
has been adopted by currently mainstream cloud platforms from Apache, Google, Yahoo, Amazon,
IBM and Sun.
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attempt to change the structure of the HDFS, so a CPDP Daemon is constructed
to access HDFS system by using (CloudNo, BlkNo), where BlkNo is a order number
of blocks in terms of reordering of blocks in a CSP. In addition, the Index-Hash
table is stored in a public computer and is accessed by all CSPs.

Our experiments were carried out in a hybrid cloud environment consisting of
three CSPs: CSP1 CSP2, and CSP3, respectively. The CSP1 is considered as an
organizer of CPDP protocol. The object in our experiments is a 10MB file and 250
sectors per block, where the length of each block is 5K Bytes and the file includes
2000 blocks. In accordance with the proportion of 50%, 30%, 20%, we allocated
the data blocks to three CSPs, respectively. The experimental results are shown in
Fig. 8. The workflow of three CSPs is the same as that shown in Fig. 6, and we
also used the same name to identify each stage of CPDP verification. After receiv-
ing the Commitment from CSP1, the user generated and sent a Challenge1 query
Q = {(i, vi)}i∈I into CSP1. CSP1 decomposed the query into three sub-queries,
Challenge2(CSP1), Challenge2(CSP2), and Challenge2(CSP3). In Fig. 8(a), we
show the overheads of computation and communication of Challenge1, Chal-
lenge2(CSP2), and Challenge2(CSP3). The costs of Challenge2(CSP2) and Chal-
lenge2(CSP3) are larger than that of Challenge1 because CSP1 need to search the

Fig. 8. Experimental results in a hybrid cloud environment.
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index table for classifying sub-query Qk = {(i, vi)}mi∈Pk
and delivering them into

other CSPs. We do not extract the time overhead of Challenge2(CSP1) because
this process is included into the whole search process and does not have a deliver-
ing process. The time difference between Challenge2(CSP2) and Challenge2(CSP3)
comes from the difference of communication cost and experiment equipments. Next,
after receiving the Challenge2, each CSP would generate corresponding response,
such Response1(CSP1), Response1(CSP2), and Response1(CSP3). In Fig. 8(b),
we show the time overheads of computation and communication of these three
responses. The overhead of Response1 is proportional to the number of queried
blocks, which is related to the radio of queried blocks for total file blocks (x-axis) in
our experiments. Note that, all Response1s have the same communication overhead
because our CPDP has the constant-size Response1. After that, CSP1 aggregate
all Response1s into Response2.

In Fig. 8(c), we show the result of comparison of Commitment, Challenge2(CSP2
and CSP3), Response1(CSP1, CSP2, CSP3) and Response2(CSP1), where Chal-
lenge2 is computed by making the maximum of Challenge2(CSP2) and Chal-
lenge2(CSP3), Response1 is processed by the same way. From this figure, we can
see that the time overheads of Response1 are much larger than the other processes.
Note that, all these processes are executed by three CSPs. Finally, the user per-
forms the final verification (called Verification(User)). We show the overheads of
Challenge(User) and Verification(User) in Fig. 8(d), all of which are executed by
the user. From this figure, the time overheads of Verification(User) is similar to
those of Response1(CSP1, CSP2, CSP3) in Fig. 8(c), and it is proportional to the
number of queried blocks.

More importantly, from the above results we can notice that the processes of
Challenge2 and Response1 are run in parallel, and around half of that time can
be saved in this kind of parallel manner. Such a time saving is directly associated
with the distribution of stored blocks in CSPs, as well as the distribution of queried
blocks. Hence, our CPDP scheme provides an effective collaborative mechanism to
reduce the total time overheads.

6. Related Work

Traditional cryptographic technologies for data integrity and availability, based
on hash functions and signature schemes,11,12 cannot work on the outsourced data
without a local copy of data. Moreover, these traditional methods are not the practi-
cal solutions for data validation by downloading them due to the expensive commu-
nications, especially for large-size files. To check the availability and integrity of the
stored data in cloud storage, researchers have proposed two basic approaches called
Provable Data Possession (PDP)4 and Proofs of Retrievability (POR).22 Ateniese
et al.4 first proposed the PDP model for ensuring possession of files on untrusted
storages and provided a RSA-based scheme for the static case that achieves the
O(1) communication cost. They also proposed a publicly verifiable version, which
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allows anyone, not just the owner, to challenge the server for data possession. This
property greatly extended application areas of PDP protocol due to the separation
of data owners and the users. However, similar to replay attacks, these schemes are
insecure in dynamic scenarios because of the dependence on the index of blocks.
Moreover, they do not fit for hybrid clouds due to the loss of homomorphism in the
verification process.

Unfortunately, none of these schemes is aware of dynamic data operations such
as query, insertion, modification, and deletion. To support dynamic data oper-
ations, Ateniese et al. have developed a dynamic PDP solution called Scalable
PDP.5 They proposed a lightweight PDP scheme based on cryptographic Hash
function and symmetric key encryption, but the server can deceive the owner by
using the previous metadata or responses due to lack of the randomness in the
challenge. The number of updates and challenges is limited and fixed in a priori.
Also, one cannot perform block insertions anywhere. Based on this work, Erway
et al.6 introduced two Dynamic PDP schemes with a Hash function tree to real-
ize the O(log n) communication and computational costs for a file consisting of n
blocks. The basic scheme, called DPDP-I, retains the drawback of Scalable PDP,
and in the “blockless” scheme, called DPDP-II, the data blocks {mij}j∈[1,t] can be
leaked by the response of challenge, M =

∑t
j=1 ajmij , where aj is a random value

in the challenge. Juels and Kaliski22 presented a POR scheme which relies largely
on preprocessing steps the client conducts before sending a file to CSP. Unfortu-
nately, these operations prevent any efficient extension to update data. Shacham
and Waters21 proposed an improved version of this protocol called Compact POR,
which uses homomorphic property to aggregate a proof into O(1) authenticator
value and O(t) computation cost for t challenge blocks, but their solution is also
static and exists the leakage of data blocks in the verification process. Wang et al.13

presented a dynamic scheme with O(log n) cost by integrating the above CPOR
scheme and Merkle Hash Tree (MHT) in DPDP. Furthermore, several POR schemes
and models have been proposed recently including.23,24 Since the response of chal-
lenges has homomorphic property, the above schemes (especially CPOR schemes)
can leverage the PDP construction in hybrid clouds.

7. Conclusions and Future Work

In this paper, we addressed the construction of collaborative integrity verification
mechanism for distributed data outsourcing in hybrid clouds. Based on the homo-
morphic verifiable responses and hash index hierarchy, we proposed a collaborative
provable data possession scheme to support dynamic scalability on multiple (pri-
vate and public) cloud storage providers. We showed that our scheme provided all
security properties required by the zero-knowledge interactive proof system, so that
it can resist various attacks even if it is deployed as a public verification service.
Furthermore, our performance analysis indicated that our proposed solution only
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incurs a small constant amount of communication and computational overheads,
which are significantly lower than non-cooperative solutions. More importantly, our
solution conceals the details of outsourced storage to reduce the burden on veri-
fiers, and verifiers cannot even distinguish whether the verified data is in a hybrid
cloud or a single cloud. Hence, our proposed method can be considered as a can-
didate technology to replace traditional hash method in cloud storage systems or
distributed file systems.

As part of future work, we would extend our work to explore more effective
and practical CPDP constructions. First, from our experiments we found that the
performance of CPDP scheme, especially for large files, is seriously affected by the
bilinear mapping operations due to its high complexity. To address this problem,
RSA-based constructions may be adopted, but existing RSA-based schemes still
have many restrictions on the system performance and security. Next, from a prac-
tical point of view, we still need to address several issues about integrating our
CPDP scheme smoothly with existing systems, for example, how to match index-
hash hierarchy with HDFSs two-layer name space, how to match index structure
with cluster-network model, and how to dynamically update the CPDP parameters
according to HDFS specific requirements. Finally, it is still a challenging problem
for the generation of tags with the length irrelevant to the size of data blocks.
We would explore a mechanism to provide the support of variable-length block
verification.
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Appendix A. Attacks for Public Blocked Scheme

The client breaks a (possibly encoded) file F into n blocks m1, . . . ,mn ∈ Zp for
some large prime p. Let e : G×G→ GT be a computable bilinear map with group
G’s support being Zp and H : {0, 1}∗ → G be the BLS Hash function. A client’s
private key is sk = x ∈ Zp, and her public key is pk = (v, u), where v = gx ∈ G
and g, u is two generators in G. The signature on block i is σi = [H(i)umi ]x. On
receiving index-coefficient pair queryQ = {(i, vi)}i∈I for an index I, the server com-
putes and sends back σ′ ←

∏
(i,vi)∈Q σ

vi

i and µ←
∑

(i,vi)∈Q vimi. The verification
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equation is

e(σ′, g) = e


 ∏

(i,vi)∈Q

H(i)vi · uµ, v


.

The scheme is not secure due to the leakage of file information and the forging
of tags, as follows:

Theorem A.1. The adversary can get the file and tag information by running or
wiretapping the n-times verification communication for a file with n blocks.

Proof. Let n be the number of blocks in the attacked file and µ(k) =
∑n

i=1 vi ·mi

denote the response of the kth user’s challenge Q(k), where we fill vi = 0 to extend
the challenge coefficients, that is, vi = 0 for any (i, vi) �∈ Q. Such that the adversary
gets the responses {(σ(1), µ(1)), . . . , (σ(1), µ(n))} after he finishes n times queries.
These responses can generate the equations


µ(1) = v

(1)
1 m1 + · · ·+ v

(1)
n mn

...
...

µ(n) = v
(n)
1 m1 + · · ·+ v

(n)
n mn

,

where, v(k)
i is known for all i ∈ [1, n] and k ∈ [1, n]. The adversary can compute

f = (m1, . . . ,mn) by solving the equations. Similarly, the adversary can get all tags
σ1, . . . , σn by the equation system σ(i) = σ1

v
(i)
1 · σ2

v
(i)
2 · · · · σn

v(i)
n for i ∈ [1, n].

Note that, the above attacks are not based on any kind of assumption.

Theorem A.2. The server can deceive the client by forging the tag of data block if
the client ’s private/public keys are reused for the different files, the client modifies
the data in a file, or the client repeats to insert and delete data blocks.

Proof. This attack can occurr in a variety of cases, but they have a common
feature that the same hash value H(i) been used at least two times. For example,
the adversary gets two data-tag pairs (mi, σi) and (m′

i, σ
′
i) with the same H(i) from

two file F and F ′, such that σi = (H(i) · umi)x, σ′
i = (H(i) · um′

i)x. The adversary

first computes σi · σ′
i
−1 = u(mi−m′

i)x and gets ux = (σi · σ′
i
−1)

1
mi−m′

i by using
extended Euclidean algorithm gcd(mi −m′

i, p). Further, the adversary can capture

the H(i)x (or H(k)x for ∀k ∈ [1, n]) by H(i)x = σi

(ux)mi
= (σ′

i
mi/σ

m′
i

i )
1

mi−m′
i . Hence,

for an arbitrary message m∗
k �= mk, the forged tag is generated by

σ∗
k = H(k)x · (ux)m∗

k = σk · (σi · σ′
i
−1)

m∗
k−mk

mi−m′
i .

This means that the adversary can forge the data and tags at any position within
the file.
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Appendix B. Attacks for Public Fragmented Scheme

Given a file F , the client split F into n blocks (m1, . . . ,mn) and each block mi

is also split into s sectors (mi,1, . . . ,mi,s) ∈ Zs
P for some enough large p. Let e :

G × G → GT be a bilinear map, g be a generator of G, and H : {0, 1}∗ → G be
the BLS hash. The secret key is sk = x ∈R Zp and the public key is pk = (g, v =
gx). The client chooses s random u1, . . . , us ∈R G as the verification information
t = (Fn, u1, . . . , us), where Fn is the file name.

For each i ∈ [1, n], the tag at the ith block is σi = (H(Fn||i) ·
∏s

j=1 u
mi,j

j )x. On
receiving query Q = {(i, vi)}i∈I for an index set I, the server computes and sends
back σ′ ←

∏
(i,vi)∈Q σ

vi

i and µ = (µ1, . . . , µs), where µj ←
∑

(i,vi)∈Q vimi,j . The
verification equation is

e(σ′, g) = e


 ∏

(i,vi)∈Q

H(Fn||i)vi ·
s∏

j=1

u
µj

j , v


 .

This scheme is not secure due to the leakage of outsourced data and the forging of
tags, as follows:

Theorem B.1. The adversary can get the file and tag information by running or
wiretapping the n-times verification communication for a file with n× s sectors.

Proof. The proof is similar to that of Theorem 1 in Appendix A. Let s be the
number of sectors. Given n times challenges (Q(1), . . . , Q(n)) and their the results
((σ′(1), µ(1)), . . . , (σ′(n)

, µ(n))), µ(k) = (µ(k)
1 , . . . , µ

(k)
s ) and Q(k) = {(i, vi)}i∈I , the

adversary can solve the system of equations, µ(k)
i = m1,i · v(k)

1 + · · ·+mn,i · v(k)
n for

k ∈ [1, n], to reach {m1,i, . . . ,mn,i}. After s times solving these equations (i ∈ [1, s]),
the adversary can obtain the whole file, F = {mi,j}i∈[1,n]

j∈[1,s]. Similarly, the adversary

can get all tags σ1, . . . , σn by using σ′(1), . . . , σ′(n).

Theorem B.2. Let s be the number of sectors in each blocks. The server can
deceive the client by forging the tag of data block if the client ’s private/public keys
and the file name are reused for two different files with the number of blocks n ≥ 2s,
the client modifies at least s data blocks in a file, or the client repeats at least s times
to insert and delete data blocks.

Proof. The proof is similar to that of Theorem 2 in Appendix A. Assume two
file F and F ′ have the same file name Fn. The adversary choices 2s different
blocks randomly from the same position in two files, without loss of generality,
(m1, . . . ,m2s) and (m′

1, . . . ,m
′
2s), such that σi = (H(Fn, i) ·

∏s
j=1 u

mi,j

j )x, σ′
i =

(H(Fn, i) ·
∏s

j=1 u
′
j
m′

i,j )x for i ∈ [1, 2s]. The adversary computes ∆1, . . . ,∆2s by

using ∆i = σi · σ′
i
−1 =

∏s
j=1(u

mi,j

j · (u′m
′
i,j

j )−1)x. These values can generate the
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following system of equations

(∆1, . . . ,∆2s)T = M � (ux
1 , . . . , u

x
s , u

′x
1 , . . . , u

′x
s )T ,

where, � denotes the operation gax+by = (x, y) � (ga, gb)T , M denotes a 2s × 2s
matrix as

M =



m1,1 · · · m1,s −m′

1,1 · · · −m′
1,s

...
...

...
...

m2s,1 · · · m2n,s −m′
2s,1 · · · −m′

2s,s


 .

Let D = M−1 = (di,j)2s×2s. The adversary can compute ux
i =

∏2s
j=1(

σj

σ′
j
)di,j and

u′xi =
∏2n

j=1(
σj

σ′
j
)ds+i,j for i ∈ [1, s]. Such that H(Fn, k)x = σk/

∏s
j=1(u

x
j )mk,j for

k ∈ [1, n]. Hence, for any message m∗
k �= mk, the forged tag is σ∗

k = H(Fn, k)x ·∏s
j=1(u

x
j )m∗

k,j = σk ·
∏s

j=1(u
x
j )m∗

k,j−mk,j .
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