State-aware Network Access Management
for Software-Defined Networks

Wonkyu Hanf, Hongxin Hu*, Ziming Zhaot, Adam Doupé,
Gail-Joon Ahnt, Kuang-Ching Wang*, and Juan Deng?

fArizona State University

tClemson University

{whan7, zzhao30, doupe, gahn}@asu.edu, {hongxih, kwang, jdeng}@clemson.edu

ABSTRACT

OpenFlow, as the prevailing technique for Software-Defined Net-
works (SDNs), introduces significant programmability, granularity,
and flexibility for many network applications to effectively man-
age and process network flows. However, because OpenFlow at-
tempts to keep the SDN data plane simple and efficient, it focuses
solely on L2/L3 network transport and consequently lacks the fun-
damental ability of stateful forwarding for the data plane. Also,
OpenFlow provides a very limited access to connection-level in-
formation in the SDN controller. In particular, for any network
access management applications on SDNs that require comprehen-
sive network state information, these inherent limitations of Open-
Flow pose significant challenges in supporting network services.
To address these challenges, we propose an innovative connec-
tion tracking framework called STATEMON that introduces a global
state-awareness to provide better access control in SDNs. STATE-
MON is based on a lightweight extension of OpenFlow for pro-
gramming the stateful SDN data plane, while keeping the under-
lying network devices as simple as possible. To demonstrate the
practicality and feasibility of STATEMON, we implement and eval-
uate a stateful network firewall and port knocking applications for
SDNss, using the APIs provided by STATEMON. Our evaluations
show that STATEMON introduces minimal message exchanges for
monitoring active connections in SDNs with manageable overhead
(3.27% throughput degradation).

1. INTRODUCTION

Over the past few years, Software-Defined Networks (SDNs)
have evolved from purely an idea [12, 13, 18] to a new paradigm
that several networking vendors are not only embracing, but also
pursuing as their model for future enterprise network management.
According to a recent report from Google, SDN-based network
management helped them run their WAN at close to 100% utiliza-
tion compared to other state-of-the-art network environments with
about 30% to 40% network utilization [22].

As the first widely adopted standard for SDNs, OpenFlow [28]
essentially separates the control plane and the data plane of a net-
work device and enables the network control to become directly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SACMAT’ 16, June 05-08, 2016, Shanghai, China
© 2016 ACM. ISBN 978-1-4503-3802-8/16/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2914642.2914643

programmable as well as the underlying infrastructure to be ab-
stracted for network applications. With OpenFlow, only the data
plane exists in the network device, and all control decisions are
conveyed to the device through a logically-centralized controller.
In this way, OpenFlow can tremendously help administrators ac-
cess and update configurations of network devices in a timely and
convenient manner and provide this ease of control to SDN appli-
cations as well.

While the abstraction of a logically centralized controller, which
is a core principle of SDNs is powerful, a fundamental limitation
of OpenFlow is the lack of capability to enable the maintenance of
network connection states inside both the controller and switches.
First, OpenFlow-enabled switches only forward the first packet of
a new flow to the controller so that the controller can make a cen-
tralized routing decision. Because the controller is unaware of sub-
sequent packets of the flow, including those that change the state
of a network connection (e.g., TCP FIN), the controller has no
knowledge of the state of the connections in its network. Second,
OpenFlow-enabled switches are incapable of monitoring network
connection states as well. The “match-action” abstraction of Open-
Flow heavily relies on L2/L3 fields (e.g., src_ip and dst_ip) and
the limited L4 fields (only src_port and dst_port), yet essential
information for identifying and maintaining the state of connec-
tions is contained in other L4 fields, such as TCP flags and TCP
sequence and acknowledgment numbers.

The lack of knowledge of network connection states in SDNs
brings significant challenges in building state-aware access control
management schemes [30]. In particular, some critical security ser-
vices, such as stateful network firewalls that perform network-wide
access control, cannot be realized in SDNs. A stateful network fire-
wall, which is a key network access control service in a traditional
network environment [17, 20, 34] and requires state-awareness,
keeps track of the states of connections in the network and makes
a decision for its access (e.g., ALLOW or DENY) according to the
states of connections in networks. However, it is impossibly hard
to realize them in current SDNs due to the inherent limitations of
OpenFlow.

Some recent research efforts [29, 30, 14, 36, 11, 6, 10, 37] ex-
tended the OpenFlow data plane abstraction to support stateful net-
work applications. They attempted to let individual switches, rather
than the controller, track the state of connections. We believe that,
not only does this design go against the spirit of SDN (because it
brings the control plane back to switches and makes switches ma-
nipulate connection states and performs complex actions beyond a
simple forwarding operation), these existing approaches are only
applicable for designing applications that need only local states
on a single switch [10]. However, such solutions force SDN ap-
plications individually access every single switch to collect entire

network states, consequently network-wide monitoring to detect
abnormalities and enforcing network-wide access control of flows
become extremely difficult.

To overcome the limitations of existing approaches, we argue
that utilizing the SDN controller for global tracking connections
is more advantageous than existing solutions in terms of its state
visibility across SDN applications that is crucial to some security
applications such as a stateful network firewall. To bring such a
state-aware network access management in SDNs, we propose a
novel state tracking framework called STATEMON. STATEMON
models active connections in SDNs and monitors global connection
states in the controller with the help of both a global state table that
records the current state of each active connection and a state man-
agement table that governs the state transition of new and existing
connections. STATEMON also introduces a lightweight extension
to OpenFlow, called OpenConnection, that programs the data plane
to forward the state-changing packets to the controller. At the same
time, it retains the simple “match-action” programmable feature of
OpenFlow and avoids scalability problems over the communication
channel between the controller and switches. In essence, STATE-
MOoN follows the general SDN principle of logical-to-physical de-
coupling and avoids embedding complicated control logic in the
physical devices, therefore, keeping the SDN data plane as simple
as possible.

In addition, to demonstrate the practicality and feasibility of STATE-
MON and state-aware network access management applications in
SDNs, we design a stateful network firewall based on the APIs
provided by STATEMON. Our firewall application provides more
in-depth access control than a stateless SDN firewall [21]. It de-
tects and resolves connection disruptions and unauthorized access
attempts targeting active connections in SDNs. To demonstrate
the generality of STATEMON, we re-implement a prior work (port
knocking) based on STATEMON (Section 5.2.3). Our experimen-
tal results show that STATEMON and network access management
applications (stateful firewall and port knocking) introduce man-
ageable performance overhead to manage network access control.

Contributions: The contributions are summarized as follows:

e We propose a connection tracking framework called STATE-
MON that enables SDN to support state-aware access control
schemes by leveraging global network states. STATEMON
keeps the data plane as simple as possible, thus being com-
pliant with the spirit of SDN’s design principle.

e We propose the OpenConnection protocol, which is a lightweight

extension to OpenFlow and retains the simple “match-action”
programmable feature of OpenFlow to enable a stateful SDN
data plane.

e We implement a prototype of STATEMON using Floodlight [1]
and Open vSwitch. Our experiments demonstrate that STATE-
MON introduces a minimal increase of communication mes-
sages with manageable performance overhead (3.27% through-
put degradation).

e We design a stateful network firewall application, using the
APIs provided by STATEMON. Our experiments show that
the stateful firewall provides more control than existing state-
less firewalls and it can effectively detect and mitigate certain
connection-related attacks (e.g., connection disruptions and
unauthorized access) in SDNs.

This paper is organized as follows. We overview the motivat-
ing problems in Section 2. Section 3 presents the design of state-

SDN Applications
Route Load-balance Firewall
App App App

SDN Controller e

. Webserver C

¢--"" “Stateless Policy

Connection B - A ALLOW

Disruption/
Termination

Forward Flow

Webserver B

fe;: A - B forward

fe,: A—> Bforward fe;: A= Bforward

feq: B> Aforward fes: B> Aforward fe,: B > Aforward

Figure 1: Standard OpenFlow Operation and its Stateless Property.

aware STATEMON. Section 4 describes the design of stateful net-
work firewall supported by STATEMON, and the implementation
and evaluation details are in Section 5. Section 6 discusses the re-
lated work of this paper, and Section 7 describes several important
issues. In Section 8, we conclude this paper.

2. BACKGROUND AND PROBLEM STATE-
MENT

To understand our proposed solution to adding state-awareness
to SDNs, we provide an overview of the current OpenFlow opera-
tion. When an OpenFlow-enabled switch receives a packet, it first
checks its flow tables to find matching rules. If no such rules ex-
ist, this means it is the first packet of a new flow. The switch then
forwards the packet to the controller, and it is the controller’s job
to decide how to handle the flow and to install flow table rules in
the appropriate switches. Specifically, the packet is encapsulated
in an OFPT_PACKET_IN message sent to the controller, and the
controller then installs corresponding rules called flow entries into
the switches along the controller’s intended path for the flow. Once
these flow entries are installed, all subsequent packets of this flow
are automatically forwarded by the switches, without sending the
packet to the controller.

For example, in Figure 1, host A wants to initiate a TCP connec-
tion with web server B. The first packet (TCP SYN) sent by host A
is checked by the ingress switch S1 and forwarded to the controller
because S1 has no flow table entry for the packet. The controller
allows the flow from host A to server B by installing flow entries
fe1, fes, and fes, into switches S1, S2, and S3, respectively. The
flow from host A to server B is called a forward flow. Using the
same process, the response packet (TCP SYNACK) generated by
server B will trigger the controller to install fes, fes, and feg into
S3, S2, and S1, respectively. The flow from server B to host A is
called a reverse flow.

As can be seen from Figure 1, neither the OpenFlow-enabled
switch nor the controller has the ability to track and maintain con-
nection states, which makes it impossible to directly develop state-
ful access control based on OpenFlow in SDNs. As a result, exist-
ing SDN controllers (e.g., Floodlight) only have a stateless firewall
application that enforces ACL (Access Control List) rules to mon-
itor all OFPT_PACKET_IN behaviors.

Using Figure 1 as an example, these stateless firewall applica-
tions can only specify simple rules, such as “packets from server B
to host A are allowed.” In contrast, a stateful firewall is a criti-
cal component in traditional systems and networks which provides
more control over whether a packet is allowed or denied based on

Table 1: Existing Stateful Inspection and Management Methodologies for SDNs (D = data plane, C = control plane, A = application plane).

Solution Snspecuoxz\) Storage x Implementation | Description

App-aware [29] v v FW, LB Maintain App-table in a switch; A switch performs handshaking on behalf of servers.

FAST [30] v v FW Controller compiles the state machine and installs it into switches.

FlowTags [14,15] | v/ v v Proxy cache Add tags to in-flight packets for keeping middleboxes’ state rather than checking state via switches or the controller.

OpenNF [16] v |V v IDS, Net-Monitor | OpenNF enables dynamic migration of middlebox states from one to another by supporting some operations (e.g., move, copy and share).
UMON [36] v v SW Switch Put UMON tables in the middle of OpenvSwitch pipelines to perform anomaly detection.

P4[11] v v Vv - A proposal for embedding programmable parser inside of switches to allow administrators to flexibly configure and define the data plane.
Conntrack [6] v v SW Switch Build the conntrack module on top of existing OpenvSwitch implementation to enable stateful tracking of flows.

OpenState [10] v v SW Switch Perform state checking using the state table in conjunction with an extended finite state machine that is directly programmable by the controller.
SDPA [37] v v FW, HW Switch | Insert the forwarding processor in packet processing pipeline to enable stateful forwarding scheme; It also includes hardware-based design.
STATEMON v |V v FW, Port-Knock | Using OpenConnection protocol, the controller centrally manages network states and provides them to SDN applications via APIs.

connection state information. For example, a stateful firewall rule
could specify “packets from server B to host A are allowed, if and
only if host A initiates the connection to server B.” These state-
ful rules are incredibly useful for security purposes, for instance to
specify that a web server should be able to accept incoming connec-
tions but never initiate an outgoing connection. However, despite
the great security benefit of these stateful policies, it is challeng-
ing to build a stateful firewall in SDNs without the full support of
stateful packet inspection [21], which is critical to provide effective
network access control management.

In addition to the development of a stateful firewall application,
the knowledge of connection states in SDNs can also help main-
tain the network’s availability. The SDN controller and applica-
tions can install, update, or delete flow entries for their own pur-
poses. However, these actions may interrupt established connec-
tions, which may consequently damage the availability of services
in the network. Consider the case of a load balancer application,
which switches flows between two web servers (Servers B and C
in Figure 1). If the flows are changed while a network connection
is still in progress, the availability of the service would be affected.
Also, attackers, who are able to perform a man-in-the-middle attack
on OpenFlow-enabled switches [9], can also disrupt existing con-
nections in the network by intentionally updating flow entries. The
root cause of these issues is that the controller and the SDN appli-
cations have no knowledge of the connection states, which results
in creating potential chances of unauthorized access into existing
connections by attackers. We argue that a critical functionality of
OpenFlow or any other SDN implementation is that the controller
should be able to identify the conflicts between active connections
and any pending flow entry update and provide network adminis-
trators with an early warning before a conflicting flow entry takes
effect. Existing verification tools [23, 24, 25, 27] cannot detect
and address such conflicts, because they are unaware of connec-
tion states in the network. By tracking global connection states in
the network, the controller will be able to deal with such conflicts
and help maintain the availability of the services in the network.

We summarize existing solutions in Table 1 that are mostly ap-
plicable only for designing applications that need states locally.
Among those solutions, only OpenNF [16] and P4 [11] attempt to
utilize the control plane of SDNs for state checking and consolidat-
ing network states. OpenNF focuses on collecting states of network
middleboxes (e.g., IDS, Net-Monitor) to support dynamic middle-
box migration, and P4 is a proposal for next generation of Open-
Flow to support state inspections. However, the former is not appli-
cable for collecting generic network states (e.g., connection state),
and the latter does not include a workable implementation. Thus,
we argue that a global connection monitoring framework, which
can be aggregated by the controller, is imperative for network-wide
connection monitoring and access management. Such a global con-
nection awareness not only enables stateful firewall applications to
detect indirect policy violations considering dynamic packet modi-

State-aware Access Control Applications

Other Applications
(e.g., port knocking)

Stateful Network Firewall ‘

r----- 1 “sriivion !
Controller | [aps | I
| |
Pro lea?:\vmin Topology | | Global State |
9 9 Manager | | | Connection Table |
Module A |

|| Tracking State
| Module Management I
: Table :
| |
OpenFlow | OpenConnection !
Messages : Messages :
J

l OpenFlow Channel ‘ L | OpenConnection Channel |
K

| Control Channel ~ -
| [Port
Flow Flow | Open- |
Table —..—>»| Table ——» Connection | |
Port O] (n) || Table || Port
Pipeline === I

OpenConnection-enabled Switch

Figure 2: STATEMON Architecture Overview

fication in SDNs, but also helps identify connection disruptions and
unauthorized access occurred in existing connections.

3. STATEMON DESIGN

In this section, we first present the key design goals of our STATE-
MON framework. Then, we illustrate the overall architecture and
working modules of STATEMON and further show how they meet
our design goals.

3.1 Design Goals

To enable stateful access management applications and overcome
the limitations of existing approaches, we propose a novel state-
aware connection tracking framework called STATEMON to sup-
port building stateful network firewall for SDNs. STATEMON is
designed with the following goals in mind:

e Centralization: STATEMON should, in adhering to the prin-
ciples of SDN, manage a global view of all network connec-
tion states in a centralized manner at the control plane.

e Generalization: STATEMON should support any state-based
protocols and provide state information to SDN applications.

e High Scalability: STATEMON should minimize message ex-
changes between the controller and switches so that the con-
trol channel will not be the performance bottleneck when
monitoring all network connection states.

Connection Match Fields Actions

OC_CON_SIG Match Fields

‘ OpenFlow Fields ‘ Flags ‘ SEQ ‘ ACK ‘ ‘ ‘ OpenFlow Fields ‘F\ags‘ SEQ ‘ ACK ‘ ‘

Extended Fields Extended Fields ——

Figure 3: Structure of An Entry in An OpenConnection Table.

3.2 STATEMON Architecture Overview

Figure 2 shows an overview of the STATEMON architecture, which
adds new modules in both the control plane (controller) and the data
plane (switches) of the OpenFlow system architecture.

To achieve the centralization goal, STATEMON modules in switches

use only the match-action abstraction to perform packet lookups,
forwarding, and other actions based on the OpenConnection table
(Section 3.3), whereas modules in the controller track a global view
of states (Section 3.4). A controller uses the OpenConnection pro-
tocol to program OpenConnection tables, which are added to the
OpenFlow processing pipeline by introducing a “Goto OpenCon-
nection Table” instruction (Got 0—0CT) in OpenFlow action set.

To achieve the generality goal, STATEMON maintains a pair of
global state table and state management table for each state-aware
application. A state-aware application initializes those tables and
registers callback functions using the APIs provided by STATE-
MoN. The global state table records network-wide connection state
information. Each entry in this table represents an active connec-
tion by specifying the flow entries that govern the active connec-
tion (e.g., fei, - - -, fee in Figure 1) and its connection state (e.g.,
ESTABLISHED in TCP). The state management table keeps state
transition rules and actions that should be performed on each state
(e.g., send an OpenConnection message to the controller).

STATEMON uses three methods to minimize the communication
overhead between the controller and switches to meet the high scal-
ability design goal. First, STATEMON leverages existing Open-
Flow protocols such as OFPT_PACKET_IN message for monitor-
ing connection states. For example, the first packet of a new flow
delivered by OFPT_PACKET_IN message would not trigger a sep-
arate OpenConnection message. Second, STATEMON identifies
ingress and egress switches for each connection and only installs
necessary OpenConnection entries into those switches to perform a
state-based inspection. Thus, STATEMON minimizes the increase
of additional table entries and avoids the potential overhead that
can be generated by other intermediate switches on the path. Third,
the OpenConnection protocol sends only expected state-changing
packets from switches to the controller.

3.3 OpenConnection Protocol

On receipt of a packet, an OpenConnection-enabled switch starts
with the OpenFlow-based packet process. For any new flow, the
first packet of this flow is forwarded to the controller via an OFPT__
PACKET_IN message. Then, the controller determines whether
that packet should be sent. If so, the controller will install new
flow entries into corresponding switches to handle future packets of
the same flow. STATEMON also listens to the OFPT_PACKET_IN
message. If this message carries a packet that any state-aware ap-
plication wants to monitor (Section 3.5), STATEMON will install
OpenConnection entries in OpenConnection tables (Section 3.3.1)
of corresponding switches using OpenConnection messages (Sec-
tion 3.3.2) and add a Got o—OCT instruction in the flow entries to
start OpenConnection processing pipeline.

3.3.1 OpenConnection Table

Before illustrating how OpenConnection-enabled switches pro-
cess packets, we first explain the structure of the OpenConnection

Packet In

OpenFlow-based
packet process

Direct packet to
QpenConn table2

Update SEQ/ACK
numbers of signal/
connection entries

Excute
action set

Figure 4: Flowchart for OpenConnection Packet Processing.

Table 2: OpenConnection Messages (C: controller, S: switch)

Description
Encapsulate entire packet (including payload)
and forward it to connection tracking module

Message Name | Direction

OC_CON_SIG S—C

OC_ADD C—S Install a new entry in an OpenConnection table
OC_UPDATE C—S Update an OpenConnection entry
OC_REMOVE C—S Remove an OpenConnection entry

table. An OpenConnection entry, which is shown in Figure 3,
has (1) connection match fields, (2) actions for a decision of for-
ward, drop, and update fields, etc., and (3) OC_CON_SIG match
fields that triggers switches to send OC__CON_SIG message when
matched. To achieve generality, both connection and OC_CON_SIG
match fields are directly programmable by state-aware SDN appli-
cations (Section 3.5).

If and only if a packet matches connection match fields, the
packet will be processed by both the OpenFlow and OpenCon-
nection pipeline as shown in Figure 4. In case the packet also
matches the OC_CON_SIG match fields, which means the packet
is a state changing packet, such as FIN in TCP, it will be encapsu-
lated in an OC_CON_SIG message and forwarded to the connec-
tion tracking module of STATEMON in the controller. The connec-
tion tracking module will maintain the state and manage associated
switches accordingly. Upon completion of these OpenConnection-
based packet process, the action set that includes the rest of the
OpenFlow actions will be executed.

The design of the OpenConnection table is aligned in spirit to the
design of the flow table, so that the data plane can process packets
using the simple “match-action” paradigm. However, OpenCon-
nection tables are more scalable than OpenFlow tables, because
OpenConnection table entries are only installed in the OpenCon-
nection tables of the two endpoint switches that directly connect
the initiating host and the receiving host of a connection. In con-
trast, using OpenFlow for each new flow, corresponding flow en-
tries must be installed in all flow tables of switches that the flow
traverses.

3.3.2 OpenConnection Message Exchanging Format

We define four OpenConnection messages to enable state-based
connection monitoring. OpenConnection messages help the con-
nection tracking module of STATEMON monitor the overall process
of connection establishment and tear-down behaviors occurring in
the data plane. Table 2 summarizes the four OpenConnection mes-
sages with a brief description of each.

The OC_CON_SIG message is used to encapsulate the state-

changing packet and conveying it to the controller (switch-to-controller

direction). The main difference from OpenFlow OFPT_PACKET_IN

Table 3: State Management Table Example for TCP connection. (A (or B) refers a pair of (IP, port).)

State Transition Conditions Next State OpenConnection Events Timeout
Message Type Source Match Fields Message Type | Destination | OC_CON_SIG Match Fields
INIT OFPT_PACKET_IN | Ingress A—B, TCP, Flag=SYN SYN_SENT OC_ADD Ingress A—B, TCP, Flag=ACK 00
SYN_SENT OFPT_PACKET_IN | Egress | B—A, TCP, Flag=SYNACK | SYNACK_SENT OC_ADD Egress B—A, TCP, Flag=FIN 5
SYNACK_SENT OC_CON_SIG Ingress A—B, TCP, Flag=ACK ESTABLISHED | OC_UPDATE Ingress A—B, TCP, Flag=FIN 5
Ingress A—B, TCP, Flag=FIN
ESTABLISHED OC_CON_SIG Earess B A, TCP, Flag=FIN FIN_WAIT 1800
Egress B—A, TCP, Flag=FIN
FIN_WAIT OC_CON_SIG Tngress A=B. TCP, Flag=FIN CLOSED 60
OC_REMOVE Ingress
CLOSED B B B INIT OC_REMOVE Egress 0

is that the OC_ CON_SIG message is only for STATEMON (so
that it will not be effective to other SDN applications), and it also
contains a randomly generated unique identifier for the connection
to distinguish the affiliation of the message. The other messages
are sent from the controller to the switches to program an Open-
Connection table. The connection tracking module generates a
OC_ADD message to install a new entry in an OpenConnection ta-
ble. For instance, to monitor a TCP connection, it installs an entry
to match TCP ACK packet at its ingress switch of the flow path.
OC_UPDATE is used for updating an OpenConnection table entry.
If a connection is terminated (or by timeout mechanism), the con-
nection tracking module sends an OC_REMOVE message to remove
all associated entries. Compared with OpenFlow, which exchanges
messages between the controller and multiple switches, OpenCon-
nection introduces only a constant number of message exchanges
between the controller and two endpoint switches for handling a
specific state-based connection. Using TCP as an example, Open-
Connection uses eight messages in total for a TCP connection (see
Table 5): (1) three OC__CON_SIG messages, (2) two OC_ADD mes-
sages, (3) one OC_UPDATE message, and (4) two OC_REMOVE
messages.

3.4 Tracking Connection States

For generality, STATEMON maintains a pair of global state table
and state management table for each state-aware application. The
connection tracking module listens to OFPT_PACKET_IN mes-
sages to initialize an entry in the global state table for a connection
and listens to OC_CON_SIG messages to update the states of the
connection based on state transition rules in the state management
table provided by the application.

3.4.1 Global State Table

The global state table records network-wide connection state in-
formation. However, simply extracting a connection’s state from a
specific switch is not sufficient to account for the overall global
state of a connection. Because OpenFlow-enabled switches are
able to rewrite packets’ headers at any point using the Set-Field
action, a packet’s header may look different at its ingress and egress
switches. This poses a challenge for the controller to identify which
packets belong to the same connection. To solve this problem,
STATEMON bonds a connection’s state (e.g., ESTABLISHED) with
its associated network rules (i.e.,the forward and reverse flow en-
tries) to effectively monitor and track an active connection.

We design the entry in the global state table as a 5-tuple en-
try denoted (Cr1,Cg,0F,0R, Sa). Connection information at the
ingress switch (C7) contains a set of packet header fields along
with its incoming physical switch port, p;. Connection informa-
tion at the egress switch (C'g) contains the same elements, except
o which refers to the outgoing physical switch port. For instance,
C' for a TCP connection can be defined as (src_ip, src_port, dst_ip,
dst_port, network_protocol, p;). Note that some fields in C; and Cg
(e.g., src_ip, src_port, dst_ip, dst_port) might not be identical

due to dynamic packet modification (Set-Field action) in SDNs.
or is a series of identifiers of flow entries that enable the forward
flow, and o R is also a series of identifiers for the reverse flow. For
example, the forward flow and the reverse flow in Figure 1 would
be o = (fe1, fea, fes) and or = (feu, fes, fes), respectively.
The last element, S,, denotes the state of a connection and it will
be further elaborated in Section 3.4.2.

The elements in a global state table entry have several properties.
The relation between C'; and C'g is to be determined by o or or
such that C7 LN Cg and Cgl LN C;l. C;l and C’gl are
directly derived from C7 and C'g by replacing the source with the
destination and changing the incoming port (p;) to the outgoing
port (p,). For example, if C; =(src_ip: 10.0.0.1, src_port: 3333,
dst_ip: 10.0.0.2, dst_port: 80, network_protocol: tcp, p;: 2) then
C’;l =(src_ip: 10.0.0.2, src_port: 80, dst_ip: 10.0.0.1, dst_port:
3333, network_protocol: tcp, po: 2).

3.4.2 State Management Table

An entry in the state management table is a 5-tuple denoted as
(State, Transition Conditions, Next State, OpenConnection Events,
Timeout). When an OFPT_PACKET_IN or OC_CON_SIG mes-
sage is received, the connection tracking module compares its origi-
nated location and header of the encapsulated packet with the Source
and Match Fields of the current state in the state management ta-
ble. If the packet meets the Transition Conditions of the current
state, the state will be updated to the Next State and OpenCon-
nection Events will be triggered. OpenConnection events instruct
the connection tracking module to send OC_ADD, OC_UPDATE,
or OC_REMOVE to corresponding switches. The Match Fields in
OpenConnection Events will configure the OpenConnection table
entries in corresponding switches to initialize connection and OC__
CON__SIG match fields. Timeout allows STATEMON to automati-
cally close a connection.

Table 3 shows how a state-aware application can use the state
management table for the TCP state transitions. A TCP connection
starts with INIT state that transitions to SYN_SENT when it re-
ceives an OFPT_PACKET_ IN message that contains a TCP SYN
flag. STATEMON identifies the location of the ingress switch (1)
from the message, and it sends an OC_ADD message back to [
with its match fields. STATEMON locates the egress switch (E)
as well by listening for the second OFPT_PACKET_IN message.
OC_CON_SIG messages collected from [or E are then used to
update the connection states. CLOSED is a temporary state only
used for sending OC_REMOVE messages and removing the associ-
ated entries. Note that one state can transition to multiple Next
States based on matching conditions and generate a variety of
actions as defined by SDN applications.

3.5 STATEMON APIs

STATEMON provides three types of application programming in-
terfaces (APIs) for SDN applications so that the applications only
need to implement their business logic. The APIs can be used (1)

Table 4: STATEMON APIs

Category API Name Key Parameters Description
. Match fields in Initialize the global
InitGSTO Cr and/or Cg state table
. S-tuple of state
Type 1 InitSMT(management table Initialize the state
Range of match management table
SetInterest() fields with wildcard
Raw packet or Search an associated
SearchEntry() ConnectionID global state entry
Type II GetConnState() ConnectionID O]Z)tt?;ncf)li:l:zz:ics)fte
DeleteEntry() ConnectionID Delete a connection
ConnAttempt() "l;yrf;erszm‘zsCs;e>e Callback function:
Type III s return one of actions
ConnectionID and
StateChange() next state (allow or drop)

to configure both the global state table and the state management
table (Type I), (2) to retrieve state information from the global
state table (Type II), and (3) to register callback functions in
STATEMON to subscribe specific state-based events (Type III).
The APIs are summarized as follows:

e Type I is used to configure the two state-specific tables in
STATEMON: the global state table and the state management
table. To customize the global state table, SDN applications
can specify match fields for C'; or Cg (e.g., IP and port num-
ber) to distinguish one connection from another. Applica-
tions can also define a state set for the connection along with
its transition rules for the state management table.

e Type IT APIs are built for sending queries (applications to
STATEMON) to retrieve network states, which SDN applica-
tions are interested in. Because all connection information is
recorded in the global state table, those queries are directly
conveyed to the global state table.

e Type III APIs are used to register callback functions in
STATEMON. For example, when a global state entry is up-
dated, STATEMON can call this function to subscribing ap-
plications to allow them to execute their own business logic.

4. STATEFUL FIREWALL DESIGN

In this section, to demonstrate the practicality and feasibility of
STATEMON and state-aware network access management applica-
tions in SDNs, we illustrate how a stateful firewall can take ad-
vantage of STATEMON to implement its state-aware access control
logic in SDNs.

The stateful firewall application first calls Type I APIs to ini-
tialize its global state table and state management table. We fo-
cus on TCP connections as a state-based protocol for this appli-
cation. To enforce a stateful firewall policy such as “host B can
communicate with host A if and only if host A initiates the con-
nection,” our firewall uses the state management table shown in
Table 3. Then, STATEMON calls the registered callback function
(Type III) when a state changing event occurs. The applica-
tion only needs to implement the logic in the callback function: (1)
a packet (or flow) heading from host B to host A should be de-
nied when its state is in INIT or SYNACK_SENT and (2) a packet
(or flow) heading from host B to host A should be allowed when
its state is in SYN_SENT or ESTABLISHED. Thus, the connec-
tion attempt (e.g., TCP SYN) initiated from host B cannot be made
whereas the attempt from host A will pass.

To show some benefits of our stateful firewall, we focus on fol-
lowing features: (1) state-aware firewall policy enforcement, (2)

Algorithm 1: Obtaining Affected Entry Set (AES)

Input: New (or Updated) flow entry (n f) and existing flow entries
(FE = {e1, ez, ...}) at the same switch.
Output: Affected entry set AES = {a1,as, ...} suchthata; € FE.

/+ First, append the new flow entry (nf) to AES */
AES.append(nf);
/x FE;: a set of flow entries installed in table t

*/
FE; «— retriecveEntries(nf.getSwitchI D, nf.getTableID);
foreach e € F'E,; do
/* Check if nf has higher priority than e and is

dependent with e */
if n.f.priority > e.priority and n f.match 0 e.match # () then
AE S .append(e);
/* Recursively perform identical operation if e
has Goto-OCT instruction x/

if e.getInstruction contains GotoT able then
temp_e.match <— e.applyActions();
temp_e.setTableI D(e.getInstruction.getTableI D),
AES_child = self.(temp_e, E);
AES.append(AES_child);

return AES;

connection disruption prevention, and (3) unauthorized access pre-
vention against active connections.

4.1 State-aware Firewall Policy Enforcement

Since STATEMON provides global network states to the firewall,
our firewall application utilizes the state information for the follow-
ing scenarios: (1) a host attempts to establish a new connection, (2)
the state of an active connection has been updated, and (3) the fire-
wall application updates the firewall policy.

First, when host A attempts to open a new connection to host
B, both host A and host B exchange initiating signal packets to
establish the connection. As soon as STATEMON receives these at-
tempts, the firewall would get relevant information via the Type
IIT callback function defined when it called ConnAttempt(). If
this attempt violates the pre-defined stateful firewall policy, the ini-
tiating packet is immediately denied and the firewall stops the con-
troller from executing the rest of the OFPT_PACKET_ IN handling
process so that no flow entry is sent to the switches.

Second, if a global state entry is updated, the stateful firewall will
also be notified via Type IIT callback function, StateChange().
Our firewall application performs pair-wise comparison, the current
state of the connection against existing stateful firewall policies.
The firewall searches the associated global state entry by calling
SearchEntry() and acquires the connection information from the
entry. To consider Set-Field actions, it retrieves tracked space
denoted T'(I, F), getting (src_ip, src_port) from I and (dst_ip,
dst_port) from E. By putting them together, we obtain 7'(1, E) =
(I.src_ip, I.src_port, E.dst_ip, E.dst_port). Using the combi-
nation of 7'(I,) and its current state, the firewall checks for rule
compliance with firewall policies. If the update of the state is not
allowed by the policy, the application raises an alarm to network
administrators and the update is denied by setting the return value
of StateChange() to drop. In case the stateful firewall application
wants to remove the connection, it may invoke DeleteEntry() func-
tion to remove the associated entries from the OpenConnection and
flow tables.

The final scenario deals with the case of updating firewall poli-
cies. When the firewall application updates a stateful rule in its
policy set, all active connections are examined against the new rule
to identify potential violations. Because each firewall policy has a
priority, computing dependency relations of firewall rules after the

Table 5: Additional State Management Table Entries for Unauthorized Access Prevention

State Transition Conditions] Next State Ope'nC(.)nnection Events i Timeout
Message Type | Source Match Fields Message Type | Destination | OC_CON_SIG Match Fields
SYNACK_SENT | OC_CON_SIG | Ingress | A—B, TCP, Flag=ACK | ESTABLISHED OC_ADD Egress A—B, TCP, Flag=FIN 5
SYNACK_SENT | OC_CON_SIG | Ingress | A—B, TCP, Flag=ACK | ESTABLISHED OC_ADD Ingress B—A, TCP, Flag=FIN 5
ESTABLISHED | oC_CON_SIG | Egress | A—B, TCP, Flag=FIN DETECTED 1800
ESTABLISHED | OC_CON_SIG | Ingress | B—A, TCP, Flag=FIN DETECTED 1800
DETECTED - - - ESTABLISHED 0

updates are vital for identifying overlaps between rules. All vio-
lating connections are to be deleted from the network by calling
the API DeleteEntry(). As a result, the associated OpenConnection
and flow entries will be flushed from the OpenConnection tables
and flow tables.

4.2 Connection Disruption Prevention

A malicious SDN application can manipulate existing flow en-
tries or install new flow entries to disrupt active connections that
consequently damage the availability of services in the network.
To prevent this type of attack, detecting these attempts before they
take effect in the network is mandatory, so our firewall application
proactively analyzes the expected impact of updates on active con-
nections. To this end, the application computes the Affected Entry
Set (AES) as described in Algorithm 1. When a new flow entry is
to be inserted into the network or an existing flow entry is about to
be updated, the application computes its dependencies with exist-
ing flow entries in the same switch. To this end, it first retrieves all
flow entries F'E from a specific switch and computes affected flow
entries by new (or updated) flow entry nf. The application next
selects the exact flow table affected by n f and builds F'E; which is
a subset of F'E. Then, it compares the priority and matching con-
ditions between e and nf, to decide whether e is affected. If nf is
dependent on e and has higher priority than e, the application adds
e into AES. If e has a goto instruction, the application further visits
the specified flow table to find AE Scriq. Considering Set-Field
actions e may have, the actions will be applied first in advance be-
fore pipelining to another flow table. The firewall makes use of
AES to detect the connection disruption attacks.

Detection of connection disruption attacks: Newly installed (or
updated) flow entry nf triggers the application to compute AES
and check AES against active connections obtained from STATE-
MON. The application then compares AES with o and o r of each
of active connections and invokes the connection tracking module
to re-calculate o and 0. The updated o= may change the re-

lation between C7 and Cx ie., C7 —£5 Cy. If Cp # Cp, the
firewall concludes that the candidate flow entry n f will disrupt an
active connection. n f may also disrupt the reverse flow of the con-

’
nection. If C5' 25 €4~V and O # €)Y, the firewall also
concludes n f will disrupt an active connection.

Countermeasure: When the controller receives the request of in-
stallation of a new flow entry n f which may cause a connection
disruption or interruption, STATEMON treats it as a candidate flow
entry and holds it until STATEMON evaluates its impact on the net-
work. Upon completion of computing AES and o (or o';), if the
firewall detects any error such as Cp # Cf or C71 # C771, it
raises an alarm to the administrator about the attempt. The admin-
istrator can decide whether it is legitimate and an intended request.
If it turns out n f is valid, STATEMON allows it to be installed in
the network. Otherwise, the firewall rejects the installation of o f.

4.3 Unauthorized Access Prevention

An attacker can attempt unauthorized access into an active con-
nection by performing a man-in-the-middle attack such as TCP se-

quence inference attack to spoof packets. TCP protocol is inher-
ently vulnerable to sequence inference attacks [33, 32]. We do not
fundamentally solve these known vulnerabilities but can partially
prevent specific types of unauthorized access to an active connec-
tion (e.g., TCP termination attacks). If an attacker successively
infers the sequence number of the next packet, he/she will be able
to create a spoofed termination packet by setting the TCP flags with
FIN (i.e., man-in-the middle attack [9]). Our firewall can leverage
STATEMON to detect such an attack by customizing the state man-
agement table and adding OpenConnection entries.

Detection of connection termination attacks: The key idea of
the detection mechanism is to add additional checking logic in the
egress switch for the forward flow (or the ingress switch for the
reverse flow) by installing new OpenConnection entries. In addi-
tion to the state management table described in Table 3, the firewall
adds additional transition rules (Table 5) to install OpenConnec-
tion entries and detect connection termination attacks. The firewall
first creates a new OpenConnection Events (the first line in Table 5)
for the SYNACK_SENT state that instructs the egress switch to in-
stall a new OpenConnection entry that matches the forward flow.
OC_CON_S1IG match fields of this entry will match the TCP FIN
packet that belongs to the forward flow. Benign TCP FIN requests
sent from the initiating host will be checked at its ingress switch by
Table 3, so STATEMON transitions the state of the connection to the
ESTABLISHED state. Hence, OC_CON_SIG fields of the third en-
try in Table 5 will not match the packet. However, attacking packet
which is forged by an attacker in the middle of the flow path will
match the OC_CON__SIG conditions of the third entry at the egress
switch which results the state to be DETECTED. DETECTED state
defined in the fifth line in Table 5 is a temporary state that is used
to inform the existence of a TCP termination attack to the firewall.
In the case of the reverse flow, the firewall leverages the second
and the fourth entry for detecting connection termination attacks.
In such a way, the firewall can capture this type of attack with the
help of STATEMON.

Countermeasure: To protect the network from the aforemen-
tioned unauthorized access (e.g., TCP termination attack), the fire-
wall can take two countermeasures: (1) return actions in the Type
IIT callback function with drop to drop the spoofed packet and
(2) rollback the connection state (DETECTED to ESTABLISHED)
to maintain the connectivity between end hosts. In addition, the
firewall may add complementary business logic in a Type III
callback function to implement post processing behaviors such as
sending warning messages to the network administrator.

S. IMPLEMENTATION AND EVALUATION

5.1 Implementation

To implement STATEMON, we chose a widely used controller,
Floodlight, and a reference OpenFlow software switch implemen-
tation, Open vSwitch (ovswitch). The routing module and link dis-
covery modules in Floodlight are used to provide network topol-
ogy information to the connection tracking module. To track ex-
isting flow entries in the network and build its reachability graph,
we used header space analysis [24] which translates each flow en-

try into a transition function that consists of a set of binaries, 0,
1, and x (for wildcard), to represent its matching conditions and
actions. We also added OFPT_PACKET_IN listener within the
controller along with an OpenConnection message handler to re-
ceive the state changing packets and program OpenConnection ta-
bles. Each global state entry has a unique identifier to distinguish it
from other entries for ease of maintenance. The connection track-
ing module leverages the OFPT_FLOW_MOD OpenFlow message
to construct controller-to-switch OpenConnection messages.

In the data plane, we implemented the OpenConnection table
along with OpenConnection message handler. Because current ver-
sions of ovswitch can only support OpenFlow up to version 1.3.0,
which cannot inspect TCP flags and sequence/acknowledgment num-
bers, we implemented a parsing module to additionally retrieve
TCP flags and sequence/acknowledgment numbers. Then, we mod-

ified the legacy OpenFlow pipelining logic to enable OpenConnection-

based packet processing. In total, less than 500 lines of C code were
added to the ovswitch code base.

To implement the stateful firewall we leveraged a built-in fire-
wall application in Floodlight to add a stateful checking module.
A stateful checking module in the firewall is able to access the
global state table by using STATEMON APIs for checking and en-
forcing its stateful firewall policy. We added the state parameter
to REST interface methods provided by the built-in firewall so that
users can define a stateful policy using REST requests. To prevent
connection disruption and unauthorized access, we added a listener
in the Static Flow Pusher module in Floodlight, so the application
is able to intercept potentially malicious or accidentally harmful
flow entry update requests and analyze their impacts on active con-
nections before they become effective.

5.2 Evaluation

To manage the state of a connection, existing solutions add the
transition logic of the connection in the data plane (Table 3). The
fundamental question, therefore, is how many additional messages
and/or performance overhead are introduced to achieve the same
goal in STATEMON. To this end, we conducted experiments using
three virtual machines, each of which had a quad-core CPU and
8GB memory and ran a Linux operating system (Ubuntu). One
virtual machine was used to run the Floodlight controller and each
of another ran Mininet [3] to simulate two networks. After we built
two separated networks, we connected them using a GRE tunnel to
flexibly add new hosts and links in one network without impacting
the other network. We also modified the size of the network by
changing the number of intermediaries (i.e., network switches).

5.2.1 STATEMON

To measure the worst-case performance of STATEMON, it was
configured to monitor every connection in the network. However,
in a real-world deployment, STATEMON only needs to monitor
connections specified by state-aware applications, which will only
improve the performance.

We first conducted experiments on an OpenConnection-enabled
switch to test the overhead created by STATEMON in the data plane.
OpenConnection enabled-switch spent less than 1x for checking
the affiliation of incoming traffic in an OpenConnection table when
the table is set to have 100 entries. Creating and updating the corre-
sponding entries in the OpenConnection table have been completed
within 2445 on average.

In the controller side, the connection tracking module is in charge
of installing/deleting an entry in the global state table and comput-
ing next state using the state management table. This module spent
less than 3ps on average to complete those two tasks when there

20 T T T

I OpenConnection .
181] OpenFlow f

16

14

12

10 1 1 T}

Messages per connection
©
H

N

VolP Bot DoS FTP Web

(a) Messages per connection of each PCAP file.

x10*
3 — 7

OpenFlow
o5l == OpenConnection i

s . : B E—

15¢ . : B E—

Sent Messages

2 4 6 8 10 12 14 16 8 0
Number of Switches

(b) Message exchanges with different number of switches.

Figure 5: Message Exchanges in STATEMON

exist 100 connections in the network. To evaluate how much of the
delay can be attributed to network latency, we compared the num-
bers of message exchanges generated by both OpenFlow protocol
and OpenConnection protocol. We collected real network traffics
(five PCAP files) from different sources (available at [4, 7]) to gen-
erate real network traffic. Our testing framework (1) automatically
identifies source and destination IP addresses of each packet in a
PCAP file, (2) dynamically generates hosts for those IP addresses
in a network, and (3) sends the packet through their network in-
terfaces. Figure 5(a) shows the number of message exchanges.
The first traffic is collected from VoIP traffic and consists of 32
connection attempts and 29 successful establishments. Network
traffic generated by this file caused the controller to generate 324
OpenFlow messages along with 215 OpenConnection messages,
which mean 10 OpenFlow messages and 7 OpenConnection Mes-
sages per connection on average. For counting OpenFlow mes-
sages, we excluded unrelated messages, such as OFPT_HELLO,
OFPT_ECHO_REQUEST, and FEATURE_ REPLY, and filtered out
unrelated OFPT_PACKET_IN messages used to handle connec-
tionless packets, such as LLDP, ARP, and DNS. Therefore, Open-
Connection protocol actually generated much fewer messages than
OpenFlow protocol. To account for theoretical number of Open-
Flow messages, we develop the equation (1). For one way flow, we
need one OFPT_PACKET_IN message and n number of OFPT_
FLOW_MOD messages where n is the number of switches on the
path. Because a connection requires bi-directional flows, it is com-
puted by 2 x (1 + n).

Bor(n) =2 (1+n) (1)

However, the number of OpenConnection messages does not de-
pend on n. Because STATEMON requires eight messages for mon-
itoring a connection, every PCAP type in Figure 5(a) creates < 8

- - = Pure vSwitch w/ Floodlight
— State-aware StateMon

3
T

>
T

=
T
I

Bandwidth(Gbits/sec)

0 20 80 100

NAith Executif)un
Figure 6: Throughput between End Hosts

OpenConnection messages per connection. Considering the third
traffic that contains DoS attacks, it has generated a large number of
OpenFlow messages due to substantial connection attempts, while
the count of OpenConnection messages remained unchanged. This
results clearly show STATEMON creates minimal message exchanges
under any circumstances. Figure 5(b) shows how STATEMON scales
with respect to increasing the number of switches in the network.
To stress an overhead, we maintained 300 connections when mea-
suring Figure 5(b). As expected, OpenFlow message count was lin-
early increased in accordance with the growing number of switches
while STATEMON maintains a constant number of message ex-
changes no matter how many switches exist in the network.

To discover overall overhead of STATEMON including network
latency, we first measured the time for establishing a connection
using a TCP handshake with and without STATEMON. As de-
fined in Table 3, STATEMON exchanges 4 messages to monitor a
TCP handshake. While a TCP handshake took 3.356ms on aver-
age without STATEMON, it took 3.651ms on average with STATE-
MoON. This means STATEMON only introduced a 0.295ms delay,
which is 8.79% overhead for a TCP handshake. To evaluate the
overall performance degradation caused by STATEMON, we used
the throughput between hosts as another metric. We used Iperf [2]
for this experiment. Iperf client (host in network A) initiated a new
connection with Iperf server (host in network B) and exchanged a
set of packets to measure the throughput. In an Open vSwitch and
Floodlight setting without STATEMON, the throughput scored an
average of 10.74 Gbits/sec (100 runs). With STATEMON enabled,
the throughput scored 10.40 Gbits/sec on average, with only 3.27%
throughput degradation.

5.2.2 Stateful Network Firewall

We configured the number of firewall policies to be 1k and fixed
the size of global state entries with 10k to measure the overhead of
our stateful firewall.

For performing state-aware firewall policy enforcement, the fire-
wall spent 1.02ms on average. When a host attempts to establish a
new connection, it took 0.83ms to complete the searches with ex-
isting firewall policies, and the attempt was immediately denied in
real-time (0.01ms). Whenever a global state entry is updated, the
firewall performed a pair-wise comparison of the update with exist-
ing state-based rules within 1.16ms, and it took 0.26ms to delete
the violating connection from the network. In case of firewall pol-
icy updates, the firewall finished its dependency checking mostly
within 0.5ms, and spent a similar time (0.31ms) for deleting the
conflicting connection from the network.

Preventing connection disruptions in the network is another key
feature in our firewall. To this end, the firewall computes the Af-
fected Entry Set (AES), and generating AES took less than 0.35ms
on average. In addition to AES, the firewall computes updated flow

entries, namely o} or o', to further compute C'y; and C7, respec-
tively. By comparing the relation the old C'r and the updated C,E,

3 T T T T T
[State-aware Policy Enforcement

[Connection Disruption Prevention
I Unauthorized Access Prevention

i

25H

Completion Time (milli sec)
o

0.5

20k 40k 60k 80k 100K
Number of connections

Figure 7: Scalability Analysis of Stateful Firewall

the firewall draw a conclusion of potential connection disruption iff
CEg # CJ. All these tasks were completed in 0.49ms on average.

To detect/prevent unauthorized access into active connections,
the firewall manipulates the state management table as described in
Section 4.3. As shown in Table 5, the firewall proactively installs
necessary rules in the state management table. Once a connection
has successively been established between two end hosts, the fire-
wall asks STATEMON to install an additional OpenConnection en-
try to monitor the terminating packet at its egress switch. Since the
firewall will be directly notified by STATEMON when a connection
termination attack is detected, the firewall only implements a logic
to drop the attack packet. The firewall drops this packet and re-
covers the connection’s state to its previous one, ESTABLISHED.
Duration time for handling this type of unauthorized access took
around 0.44ms in total.

We also checked the scalability of the stateful firewall applica-
tion by measuring the duration time for completing three types of
strategies. We gradually increased the number of existing connec-
tions from 20k to 100k. As shown in Figure 7, state-aware policy
enforcement took almost constant time (= 1ms) no matter how
many connections exist in the network. The firewall spent more
time in preventing connection disruptions than that of unauthorized
access prevention due to the computation overhead incurred by Al-
gorithm 1. However, overall duration time for both cases linearly
increased with respect to increasing number of connections and
took less than 3 milliseconds at 100k connections, which is man-
ageable.

5.2.3 Other Application: Port Knocking

Even though we mainly focused on TCP connection in this paper,
a key design goal is that STATEMON can support different state-
based protocols, such as port knocking. Port knocking is a method
to open a closed port by checking a unique knock sequence, a series
of connection attempts destined to different ports [26]. Thus, we
developed this application to demonstrate how other network ac-
cess management schemes can be also implemented using STATE-
MON in SDNs.

For example, an application may want to allow a connection iff
a series of requests matches a specific port order of A, B, C, and
D. By modifying the state management table in STATEMON, the
application can receive state-changing packets by listening OFPT__
PACKET_IN messages. In other words, the initial state can transi-
tion to the first knock state (e.g., PORT_KNOCKT1) when the packet
is destined to port A, waiting for the subsequent knocking sequence
(port B). Such a way, the application opens the closed port of a
server if the state becomes the OPEN state.

To evaluate the overhead incurred by STATEMON-based appli-
cation, we re-implemented the port knocking that has been demon-
strated in prior work [26], which performs the same functions but
locally maintains the state in the switch. We installed the state
transition rules for the port knocking in the switch. To complete
the knocking sequence, it took 104.96ms without STATEMON,
and STATEMON-based application spent 113.83ms in total (8.45%
overhead).

6. RELATED WORK

As explained in Table 3, majority of existing solutions are fo-
cused on performing stateful inspection in the data plane [29, 30,
14, 36, 11, 6, 10, 37]. There is some debate as to whether this
design goes against the spirit of SDN’s control and data plane sep-
aration. In addition, none of these approaches give much atten-
tion on how to leverage the logically centralized controller for pro-
viding a global state visibility of the network to applications. In
contrast, the unique contribution of STATEMON comes from its
consolidated state checking mechanism enabled by OpenConnec-
tion protocol and the connection tracking module. Specifically,
STATEMON can provide global state-based connection informa-
tion to SDN applications along with several APIs that allows them
to define application-specific states. Even though OpenNF [16] at-
tempts to achieve a similar state sharing, it mainly collects a state of
middleboxes (e.g., firewall, proxy, and load-balancer), not generic
network states.

A number of verification tools [31, 21, 27, 25, 23, 24] for check-
ing network invariants and policy correctness in SDNs have been
recently proposed. FortNOX [31] was proposed as a software ex-
tension to provide security constraint enforcement for OpenFlow-
based controllers. However, the conflict detection algorithm pro-
vided by FortNOX is incapable of analyzing stateful security poli-
cies. FlowGuard [21] was recently introduced to facilitate not only
an accurate detection but also a flexible resolution of firewall pol-
icy violations in dynamic OpenFlow-based networks. However, the
design of FlowGuard fully relies on flow-based rules in the data
plane and is only capable of building a stateless firewall applica-
tion for SDNs. Anteater [27] is indeed an offline system and can-
not be applied for a real-time flow tracking. VeriFlow [25] and
NetPlumber [23] are able to check the compliance of network up-
dates with specified invariants in real time. VeriFlow uses graph
search techniques to verify network-wide invariants and deals with
dynamic changes. NetPlumber utilizes Header Space Analysis [24]
in an incremental manner to ensure real-time response for checking
network policies through building a dependency graph. Neverthe-
less, none of those tools are capable of checking stateful network
properties in SDNs.

7. DISCUSSIONS

The OpenFlow protocol is evolving continuously, and the latest
version (v1.5.0) has been recently released [8]. The newest version
of OpenFlow attempts to add TCP flags for the extended matching
criteria to address the problem of insufficient L4 header inspection
capability as we have discussed.

However, the newest version of OpenFlow could not answer crit-
ical questions related to the maintenance and manipulation of net-
work connection states. Especially, it does not articulate how to
leverage TCP flags to monitor states in both the switch and con-
troller. We expect that our design of OpenConnection in STATE-
MON could provide an inspirational solution for OpenFlow to build
and enable its future stateful inspection scheme.

While we took great efforts to realize state-aware applications
for SDNs, the deployment of STATEMON to real-world production
networks requires additional considerations in terms of network se-
curity. For example, defense mechanisms against DDoS attacks
discussed in [35] may need to be considered in STATEMON. In ad-
dition, the current design and implementation of STATEMON uti-
lize OpenFlow-based controller and switch modules, hence it only
works in the context of an OpenFlow-based environment. However,
the main idea of STATEMON, which is to provide state tracking
framework for various network applications, can be also realized in
other network paradigms, such as Network Function Virtualization
(NFV) [5, 19] .

8. CONCLUSION

In this paper, we have articulated network access control issues
in SDNs and presented a state-aware connection tracking frame-
work called STATEMON that facilitates the control and data planes
of SDN to enable stateful inspection schemes. In the control plane,
we have designed a novel connection tracking mechanism using
a global state table and a state management table to track active
connections. To enable a state-aware data plane, we have intro-
duced a new OpenConnection protocol, which defines four mes-
sage formats and a state-aware OpenConnection table. We have im-
plemented STATEMON using Floodlight and Open vSwitch along
with two access management applications (i.e., a stateful network
firewall application and a port knocking application) for SDNs, to
demonstrate the flexibility of STATEMON. Our experimental re-
sults have demonstrated that STATEMON and two state-aware net-
work access management applications showed manageable perfor-
mance overhead to enable critical state-aware protection of SDNs.

Acknowledgments

This work was partially supported by grants from National Science
Foundation (NSF-I1IS-1527421, NSF-CNS-1537924 and NSF-CNS-
1531127), Intel corporation and Center for Cybersecurity and Dig-
ital Forensics at Arizona State University.

9. REFERENCES

[1] Floodlight: Open SDN Controller.
http://www.projectfloodlight.org.

[2] Iperf. https://iperf.fr/.

[3] Mininet: An Instant Virtual Network on Your Laptop.
http://mininet.org.

[4] Public PCAP Files for download.
http://www.netresec.com/?page=PcapFiles.

[5] Service Function Chaining (SFC) Architecture.
https://tools.ietf.org/html/draft-ietf- sfc-architecture-02.

[6] Stateful Connection Tracking & Stateful NAT.
http://openvswitch.org/support/ovscon2014/17/
1030-conntrack_nat.pdf.

[7] The Internet Traffic Archive. http://ita.ee.lbl.gov/.

[8] OpenFlow Switch Specification Version 1.5.1 (Protocol
version 0x06), December, 2014.
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.1.pdf.

[9] K. Benton, L. J. Camp, and C. Small. Openflow vulnerability
assessment (poster). In Proceedings of ACM SIGCOMM
workshop on Hot topics in software defined networking
(HotSDN’13), pages 151-152. ACM, 2013.

[10] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
Openstate: programming platform-independent stateful

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

openflow applications inside the switch. ACM SIGCOMM
Computer Communication Review, 44(2):44-51, 2014.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,

G. Varghese, et al. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87-95, 2014.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise. In
Proceedings of the ACM SIGCOMM 2007 conference. ACM,
2007.

M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,

D. Boneh, N. McKeown, and S. Shenker. Sane: a protection
architecture for enterprise networks. In Proceedings of the
15th conference on USENIX Security Symposium. USENIX
Association, 2006.

S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul. Flowtags:
Enforcing network-wide policies in the presence of dynamic
middlebox actions. In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(HotSDN’13), August 2013.

S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul. Enforcing network-wide policies in the presence of
dynamic middlebox actions using flowtags. In Proceedings
of the 11th USENIX Conference on Networked Systems
Design and Implementation, pages 533-546. USENIX
Association, 2014.

A. Gember-Jacobson, R. Viswanathan, C. Prakash,

R. Grandl, J. Khalid, S. Das, and A. Akella. Opennt:
Enabling innovation in network function control. In
Proceedings of the 2014 ACM Conference on SIGCOMM,
pages 163-174. ACM, 2014.

M. G. Gouda and A. X. Liu. A Model of Stateful Firewalls
and its Properties. In International Conference on
Dependable Systems and Networks (DSN), pages 128—137.
IEEE, 2005.

A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,

J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean
slate 4d approach to network control and management. ACM
SIGCOMM Computer Communication Review, 35(5):41-54,
2005.

R. Guerzoni et al. Network functions virtualisation: an
introduction, benefits, enablers, challenges and call for
action, introductory white paper. In SDN and OpenFlow
World Congress, 2012.

D. Hartmeier and A. Systor. Design and Performance of the
OpenBSD Stateful Packet Filter (pf). In USENIX Annual
Technical Conference, FREENIX Track, pages 171-180,
2002.

H. Hu, W. Han, G.-J. Ahn, and Z. Zhao. Flowguard: building
robust firewalls for software-defined networks. In
Proceedings of ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN’14), pages 97-102.
ACM, 2014.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.
B4: Experience with a globally-deployed software defined
wan. In ACM SIGCOMM Computer Communication Review,
volume 43, pages 3—-14. ACM, 2013.

P. Kazemian, M. Chang, H. Zeng, G. Varghese,

N. McKeown, and S. Whyte. Real time network policy
checking using header space analysis. In Proceedings of the

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

10th USENIX conference on Networked Systems Design and
Implementation, pages 99—112. USENIX Association, 2013.
P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: static checking for networks. In Proceedings of the
9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: verifying network-wide invariants in real
time. In Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation, pages
15-28. USENIX Association, 2013.

M. Krzywinski. Port knocking from the inside out. SysAdmin
Magazine, 12(6):12—17, 2003.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and
S. T. King. Debugging the data plane with anteater. In
Proceedings of the ACM SIGCOMM 2011 conference, pages
290-301, 2011.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69-74, 2008.

H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and

T. Lakshman. Application-aware data plane processing in
sdn. In Proceedings of ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN’14), pages
13-18. ACM, 2014.

M. Moshref, A. Bhargava, A. Gupta, M. Yu, and

R. Govindan. Flow-level state transition as a new switch
primitive for sdn. In Proceedings of ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking
(HotSDN’14), pages 61-66. ACM, 2014.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu. A security enforcement kernel for openflow networks.
In Proceedings of ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking (HotSDN’12), August 2012.
Z. Qian and Z. M. Mao. Off-path tcp sequence number
inference attack-how firewall middleboxes reduce security.
In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 347-361. IEEE, 2012.

Z. Qian, Z. M. Mao, and Y. Xie. Collaborative tcp sequence
number inference attack: how to crack sequence number
under a second. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 593-604.
ACM, 2012.

C. Roeckl and C. M. Director. Stateful inspection firewalls.
Juniper Networks White Paper, 2004.

S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard:
scalable and vigilant switch flow management in
software-defined networks. In Proceedings of the 20th ACM
conference on Computer and communications security
(CCS’13), pages 413-424. ACM, 2013.

A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen. Umon:
Flexible and fine grained traffic monitoring in open vswitch.
In Proceedings of the 11th International Conference on
emerging Networking EXperiments and Technologies
(CoNEXT’15), December 2015.

S. Zhu, J. Bi, C. Sun, C. Wu, and H. Hu. Sdpa: Enhancing
stateful forwarding for software-defined networking. In
Proceedings of the 23rd IEEE International Conference on
Network Protocols (ICNP 2015), pages 10-13.

