Towards Effective Verification of Multi-Model Access Control
Properties

Bernhard J. Berger
University of Bremen
Bremen, Germany
bernhard.berger@uni-bremen.de

Karsten Sohr
University of Bremen
Bremen, Germany
sohr@uni-bremen.de

ABSTRACT

Many existing software systems like logistics systems or enterprise
applications employ data security in a more or less ad hoc fashion.
Our approach focuses on access control such as permission-based
discretionary access control (DAC), variants of role-based access
control (RBAC) with delegation, and attribute-based access control
(ABAC). Typically, software systems implement hybrid access con-
trol making an effective security analysis and assessment rather
difficult.

We propose an analysis methodology to reconstruct access con-
trol using a novel modular access control model. Our modular
approach allows us to flexibly model exactly those access proper-
ties that are relevant for a given system. As formalism we use the
Object Constraint Language (OCL) with Ecore from the Eclipse
Modeling Framework (EMF).

We demonstrate the suitability of our access control model for
three software systems: a port community system (PCS), a clini-
cal information system (CIS), and an identity management system
(IdMS). For the PCS and CIS we model concrete roles and policies.
For the IIMS we evaluate our analysis methodology in-depth by
reconstructing access control policies from byte code using the Soot
analysis framework as well as model transformation techniques
(QVTo). The resulting model helped us to identify design deficien-
cies. Violated OCL invariants such as for mutually exclusive roles or
cardinality constraints revealed non-trivial security vulnerabilities.

CCS CONCEPTS

« Security and privacy — Access control; « Information sys-
tems — Enterprise applications; - Software and its engineering
— Specification languages; Software reverse engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SACMAT ’19, June 3—6, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6753-0/19/06...$15.00
https://doi.org/10.1145/3322431.3325105

Christian Maeder
University of Bremen
Bremen, Germany
c.maeder@uni-bremen.de

Rodrigue Wete Nguempnang
University of Bremen
Bremen, Germany
wete@uni-bremen.de

Carlos Rubio-Medrano
Arizona State University
Tempe, AZ, USA
crubiome@asu.edu

KEYWORDS

Access Control Model; Permissions; RBAC; ABAC; Delegation; OCL;
Reverse Engineering

ACM Reference Format:

Bernhard J. Berger, Christian Maeder, Rodrigue Wete Nguempnang, Karsten
Sohr, and Carlos Rubio-Medrano. 2019. Towards Effective Verification of
Multi-Model Access Control Properties. In The 24th ACM Symposium on
Access Control Models and Technologies (SACMAT °19), June 3-6, 2019, Toronto,
ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3322431.3325105

1 INTRODUCTION

Established software systems have been initially developed without
security in mind. Only when the software gets larger and more
complex, security becomes a topic for the software vendor. It often
happens that early security efforts are carried out exploratory, since
many companies have no deep security knowledge. This leads to
solutions that do not fit the approaches that have been researched.
Nevertheless, many companies finally come to the point where they
take the subject of software security more seriously. The attempt
to use standard mechanisms for security is made difficult at this
point by historically grown solutions, i.e. old code that needs to
be maintained for the functionality but is based on outdated or no
security concepts.

In particular, we observed that in practice different access con-
trol concepts are combined, for example, role-based access control
(RBAC) [13, 29] is often mixed with permission-based discretionary
access control (DAC) [11] using access control lists (ACLs). Both
access control models are still widespread and contrast recommen-
dations to use pure attribute-based access control (ABAC) [19].

In the concrete sense, existing modeling approaches for autho-
rization do not support such combined models, and fall short of
providing guarantees for accuracy, model-level as well as implemen-
tation-level verification and validation, thus potentially opening
the door for the existence of serious security vulnerabilities.

To better understand such implemented access control policies,
one needs a modeling approach that (i) captures those concepts usu-
ally occurring in access control implementations and (ii) integrates
these access control concepts into a unified model. Research showed
that even for simple programs the implemented and planned access
control policies differ [33]. Ultimately, reconstructed access control

https://doi.org/10.1145/3322431.3325105
https://doi.org/10.1145/3322431.3325105
https://doi.org/10.1145/3322431.3325105

policies can be thoroughly assessed and potentially verified to make
an application more secure.

We use Ecore from the Eclipse Modeling Framework (EMF) [35]—
an alternative meta-modeling architecture with concepts similar
to the Unified Modeling Language (UML) for class modeling—in
conjunction with the Object Constraint Language (OCL) for the
representation of our access control model.

According to Ferraiolo et al. [13] the term access control model
denotes an intermediate abstraction level between a high-level
access control policy and a low-level access control mechanism. We
use the term model in the broader (EMF) sense. Our modular access
control model allows us to express access control policies that are
implemented in different domains, e.g. healthcare, logistics, large
enterprises, or banking.

Software models can be (re-)created by hand, but the main idea is
to obtain semi-automatically (UML or Ecore) models and/or object
diagrams from real software artifacts like requirements specifica-
tions, documentation, source code and configuration files. Some-
times, specifying UML models already exist for a system, but it is
unclear if such models still reflect a deployed implementation. Cer-
tainly, an existing UML model can serve as basis for our modeling
of access control, but we want to reconstruct accurate models from
source or byte code. For analyzing byte-code and extracting relevant
access information we use the Soot analysis framework [38] with
specifically written plugins. For adjusting extracted models to fit
our access control formalism we use QVTo [37] for model-to-model
(M2M) transformations. Basic hand-written parsers are also em-
ployed to extract access information from concrete configuration
files as we elaborate in Section 5.3.

RBAC is an important part of our unified model because we
still often need to capture role-based policies. In contrast to prior
work [23, 34, 36] our access control model is more modular regard-
ing various RBAC concepts including role-based delegation. Our
model also allows us to disregard roles entirely, for example, to
capture DAC or basic ABAC policies. Role-based delegation makes
a rather static RBAC policy more flexible. For full flexibility we use
authorization contexts [18, 25] that support context sensitivity and
essentially correspond to basic ABAC.

We evaluate our access control model and modeling approach
for three real-world software systems: a port community system
(PCS), a clinical information system (CIS), and an identity man-
agement system (IdMS) of a large enterprise. The PCS, see Section
5.1, links different stakeholders of seaports, e.g. terminal opera-
tors, forwarders, and shipping companies. The clinical information
system, see Section 5.2, is—due to critical and sensitive electronic
patient’s records—a typical example of access control. We create
software models with intended access control policies from soft-
ware artifacts like documentation and business process descriptions.
For the IdMS, described in Section 5.3, we actually extracted the
implemented access control policy from Java byte code and gen-
erated model instances from live data using reverse-engineering
techniques as, for example, described by Koschke and Simon [22].
The reconstructed architecture served as a basis for security audits
and helped revealing a series of non-trivial vulnerabilities.

Our contributions are threefold. We present:

1. a novel modular access control model covering a wide and
heterogeneous range of practical access control concepts,

2. amethodology on how to reconstruct concrete access control
of existing software systems, and

3. an evaluation showcasing the suitability of our modeling
and reconstruction approach to discovering access control
vulnerabilities.

The paper is organized as follows. We assume familiarity with
classical RBAC as given by Sandhu et al. [29]. In Section 2, we
present related work. In Section 3, we give a short overview of
Ecore. Section 4 explains our approach in detail and elaborates
on various forms of authorization constraints. In Section 5, we
demonstrate the applicability of our access control model to dif-
ferent domains and evaluate our reconstruction methodology for
an identity management system. After a brief discussion of pos-
sible disadvantages of our approach in Section 6 we conclude in
Section 7.

2 RELATED WORK

The classical RBAC paper of Sandhu et al. 1996 [29] describes roles,
role hierarchies and constraints like mutually exclusive roles, car-
dinality constraints, and prerequisite roles. Ahn and Sandhu inves-
tigate much more authorizations constraints and suggest a formal
specification language [3, 4]. Shin and Ahn 2000 [30] suggest to use
UML as RBAC representation. In 2001, they propose to use OCL
to specify authorizations constraints [5]. Barka and Sandhu 2000
[6] add delegation to RBAC. Zhang et al. 2003 [39] present a rule-
based delegation model (RDM2000) supporting role hierarchies and
multi-step delegation. Kumar et al. 2002 [25] add contexts to RBAC.
Hu and Weaver 2004 [18] employ contexts and context types in the
healthcare domain that is also a basis of our authorization contexts
in Section 4.4.

Jurjens 2002 [21] presents the extension UMLsec of UML that
allows one to formally express a larger range of security-relevant
information. Without OCL, UMLsec has no support for various
RBAC constraints like separation of duty [12]. Basin et al. 2006—
2011 [7-9] present the security modeling language SecureUML for
modeling RBAC as metamodel using OCL for access control policies
to enhance Model Driven Architecture (MDA) with Model Driven
Security. From models they can automatically generate access con-
trol infrastructures for applications. Based on UML profiles it is
unclear how different tools handle this extension mechanism.

Ray et al. 2004 [26] use UML class diagram templates and OCL to
specify classical RBAC authorization constraints. Constraint viola-
tions are visualized using UML object diagram templates. Templates
are instantiated with values from applications. Based on the dele-
gation model RDM2000 [39], Sohr et al. integrate delegation and
revocation [34]. Kuhlmann et al. 2013 [23] follow the approach of
[26, 34]. They add a domain-specific language (DSL) for handling
time-dependent dynamic constraints to their RBAC metamodel.
Their workbench is USE [15], with a SAT-based model validator.

The modeling approaches presented above exclusively center
around RBAC and fail to support permission-based [11] DAC, at-
tribute-based ABAC [19, 24], or a combined model. Existing sys-
tems, like the identity management system described in Section 5.3,
however, require a combined model to appropriately model and

[1..1] eReferenceType

H Eclass | E EDpataType

= name: EString I l = name : EString

[0..*] eSuperTypes
[0..¥] eReference [0..1] eOpposite

Q EReference

[1..1] eDataType

[0..*] eAttribute

E EAttribute

name : EString
containment : EBoolean = false

= name : EString
= lowerBound: Elnt =0
= ypperBound : EInt = -1

lowerBound : Elnt = 0
upperBound : EInt = -1

oooao

Figure 1: Simplified Ecore

validate access control. Implementing discretionary access control
using RBAC [27] or using ABAC for roles [24] would not reflect
the underlying software architecture.

We extend the work of Kuhlmann et al. [23] by making the
access control model more modular, succinct, and general. Apart
from RBAC also permission-based [11] DAC and attribute-based
ABAC [19, 24] are integrated. For validation, we exclusively use
the EMF [35]. Also Abomhara and Lazrag [2] report that OCL with
EMF worked smoother.

Despite the number of static analysis approaches for software
security in general, there is little work that addresses the problem of
reconstructing and visualizing the security architecture of software
systems. One exception is the technique introduced by Abi-Antoun
and Barnes [1]. They annotate the source code of an application
to extract Ownership Object-Graphs statically. Ownership Object-
Graphs represent a hierarchical runtime-architecture of the objects
within a system. Furthermore, they compare the extracted graph
with a given DFD to identify forbidden data flows. The approach
has only been tested for small and non-distributed applications
(about 3,000 lines of code) [31]. Inspecting existing software for
our methodology is based on earlier reverse engineering work
[10, 22, 33].

3 BACKGROUND

As the formalism for representing our access control model we use
Ecore and OCL from the Eclipse Modeling Framework (EMF) that
is similar to UML and OCL. UML models and OCL are typically
used to capture requirements and design decisions. OCL is crucial
to model desired system properties, invariants or constraints ac-
curately. UML together with OCL allows one to check for model
consistency, reachability, and absence of contradictions [17]. Using
models has the advantage of being independent of a particular im-
plementation or platform. There are different kinds of diagrams in
UML, but we only use class and object diagrams. The latter repre-
sent concrete instances of classes and associations that are defined
in class diagrams.

Class diagrams with OCL constraints and object diagrams allow
for (partial) verification and validation. Thereby verification an-
swers the question “Are we building the product right?”, whereas
validation answers the question “Are we building the right prod-
uct?”.

Ecore is the meta model of the Eclipse Modeling Framework
(EMF) for writing models. We use it for representing our access
control model and for the software systems we are going to evaluate.
A simplified subset of Ecore concepts given by Steinberg et al. [35]
is shown in Figure 1 in EMF’s own notation. The class

e EClass represents a type with super types and contains
references as well as attributes,

e EAttribute represents a typed attribute,

e EDataType represents the data type of an attribute,

e EReference represents an association between the contain-
ing class and the class referenced by eReferenceType.

Associations are drawn as arrows and containment is a special
kind of association that is drawn with a black diamond. Using
eOpposite, two associations can be declared to be inverse associa-
tions of each other.

Both attributes and references of a class may be multi-valued
having a cardinality of 0 (meaning optional) or greater or —1 (mean-
ing unlimited). A single (required) attribute or reference would
have a lower and upper bound of 1.

In contrast to UML—as supported by the USE tool [15]—, as-
sociations in Ecore may be unidirectional largely supporting our
modularity. Classes may be referenced without being changed. Like
in UML, inheritance is drawn with a hollow triangle. Dashed lines
point to interfaces whereas solid gray lines point to possibly ab-
stract super classes as shown in some other class diagrams.

4 APPROACH

This section is subdivided into four subsections. Firstly we present
our modeling methodology in Section 4.1. After introducing our
RBAC model based on Ecore in Section 4.2, we add role-based
delegation in Section 4.3 to make the (static) user assignment of
roles more dynamic. The final Section 4.4 explains our modeling
of fully flexible authorization contexts that corresponds to basic
attribute-based access control (ABAC).

4.1 Methodology

We view a software system very abstractly as an instance of the
software model depicted in Figure 2.

We simulate a finite number of traces and states of a given system.
A single trace is composed of a sequence of executions. We use traces
to model use cases of the software system. For an execution, a subject
applies an operation to a starting state that leads to an ending state
that in turn is the starting state of a subsequent execution within a
trace. The changes of an operation to the state are modeled using
OCL expressions in the operation’s execute method. Operations
can access resources or call other operations that are resources as
well. The underlying states are mere collections of resource values.
This software model is the foundation of our access control model
elaborated later. To create a model instance for a concrete software
system we are using the following steps.

Step 1 In the first step, we create an instance model of the soft-
ware under investigation. Therefore, we start by creating
instances for operations of the software. We create resource
objects that suitably describe an initial abstract state of our
underlying software. We also establish the accesses rela-
tions between operations and resources that again may be

| EI Resource |

IB Subject

‘ = resourcelD : EString I = name : EString
& getAllAuthorizations
2% ().: Authorization

[0..*] resource ?T [0..*] accesses

[1..1] subject
| B Operation

= name : EString
@ execute(r State, s Subject)

[1..1] operation

[state [1.1] end E Execution
[1..1] start -
[0..*] execution
*
E softwareModel [0.7] trace H Trace

Figure 2: Software Model

operations. Finally, we create OCL expressions describing
the state changes caused by operations.

Step 2 In the second step, we add the access control aspects to our
instance model by creating instances for all known roles
and subjects, see Section 4.2 for details. Furthermore, we
construct the intended access control policy of the software,
for example, by concrete role assignments and instances
of any RBAC constraints. At this stage, consistency checks
(i.e. role exclusion) can already be performed.

Step 3 Then, we model how our application enforces access control
decisions. This mechanism is extracted from the implementa-
tion, i.e. the Java source or byte code. Having object diagrams
for the policy and the enforcement allows further consistency
checks and the assessment or improvement of the under-
lying software. Showing that the enforcement implies the
policy for any object constellation amounts to verification,
which, however, is beyond our current scope.

Step 4 In this step, we create expected executions and traces as
objects in our object diagram, for example, based on require-
ment specifications, documentation of business processes,
or use cases. From initial states and OCL expressions of Step
1 intermediate and ending states are calculated.

Step 5 In the last step, we identify traces that lead to states violating
invariants imposed on state changes or invariants of the
access control policy from Step 2.

All aforementioned steps could be done manually for some imag-
ined software. The main idea, however, is to (automatically) extract
the objects for all above steps from the actually deployed software
with associated artifacts or even recorded runs. This is exemplified
in Section 5.3 where we use the Soot analysis framework [38] with
extra plugins to extract the information we deem to be relevant.
The reconstructed security architecture helps not only to detect
vulnerabilities via audits, but is also a good basis for a model-driven
improved development. The Soot plugins and configuration parsers
are specific for application frameworks but may be reused for soft-
ware systems based on comparable frameworks. Reuse is certainly
likely for revised versions of the same software.

4.2 Modeling RBAC

Figure 3 shows parts of our modular access control model as an
Ecore class diagram.

The class Authorization is introduced as a superclass of Role
and Permission to mediate between subjects and individual permis-
sions for both DAC without roles and RBAC using roles. The class
Permission is reused to represent the permission-to-role assign-
ment, that is the PA relation of the RBAC96 model [29]. The abstract
class Authorization is our concession to modularly compose DAC
and RBAC policies that are both often—and even simultaneously—
used in existing software. For a pure DAC policy roles could be
entirely ignored. The class Permission models a description of
authorized interactions with resources.

RBAC96 features already dynamic/time-dependent sessions that
require one to check if activated roles (given by RBAC96’s roles
function) are a subset of the roles that are assigned to a user (given
by RBAC96’s UA relation). The possibility, to only activate a subset
of a user’s roles, supports the principle of least privilege. Only roles
required for a task at hand need to be activated. For tasks in different
sessions, other roles can be activated.

In our model, the class Person corresponds to users of RBAC96
and sessions are modeled via the class Login. Note that the classes
Person and Login both inherit from Subject and that several lo-
gins may be associated to a single person. (The opposite reference of
login corresponds to RBAC96’s user function.) The activated roles
of a login are obtained via the method getAllAuthorizations,
whereas the same method applied to a person yields the assigned
roles. The OCL invariant in Listing 1 checks if all activated roles of
alogin 1 are included in the assigned roles.

Listing 1: Session check

context Person:
invariant sessionCheck: login — forAll(1 |
getAllAuthorizations () —
includesAll (1. getAllAuthorizations ()));

Only the type of the involved role sets is generalized to sets of
authorizations. Permissions are not regarded as authorizations for
a pure RBAC policy.

The method getAllAuthorizations has to be distinguished
from the reference authorization and from the method getAutho-
rizations of the class Authorization in that only this method
properly collects all roles. Further implicit roles may be contributed
by a role hierarchy, by delegations or modularly by future exten-
sions. For the basic RBACy of RBACY96 without role hierarchies and
constraints, the reference authorization alone would be enough
to know as it represents the explicitly associated roles.

In the following two subsections we describe our modeling of
role hierarchies and authorization constraints respectively.

Role Hierarchies. We modularly extend RBAC with role hierarchies
to RBAC; by adding the subclass HierarchicalRole of the class
Role with an additional junior (and inverse senior) association.
This differs from the usual modeling in the literature [23, 26] where
a junior association and numerous auxiliary methods are directly
added to the Role class. The separate class HierarchicalRole
allows for a static distinction and modular composition that avoids

E] Cardinality | | B HierarchicalRole

@ — — [0..*] junior

o getAuthorizations() : Authorization
S

{ ‘:EI Constraint W |
(

ﬁ juniors() : HierarchicalRole

o seniors() : HierarchicalRole

[0..*] senior

[1..1] role

H Role

[0..*] permission

= name : EString

[PrerequisiteRole

‘ @ Authorization

RE| Subject ‘

[0..*] subject | = name :EString
E;‘, getAllAuthorizations() : Authorization
&3 accessextension : AccessExtension

,,,,,,,,,,, S

[0.*] login|] [Login][H system]
) C

(

D@* getAuthorizations() : Authorization | [0, #] authorization
0(%; getAllSubjects() : Subject

Figure 3: RBAC class diagram

unnecessary dynamic checks during validation for policies without
a hierarchy.

Only the usually few or even empty direct junior roles need to be
given for a hierarchical role. (For a proper hierarchical role either
the junior or the inverse senior association should not be empty.)
The transitivity of role hierarchies can be derived via computing the
transitive closure—this is a built-in OCL operation—of all proper
juniors and seniors, respectively, as given in Listing 2.

Listing 2: Transitive junior roles

Listing 3: Non-cyclic role hierarchy

invariant nonCyclicRoleHierarchy:
juniors () — excludes(self);

Listing 4: Cardinality constraint

invariant cardinalityCheck:
let num:EInt = role.getAllSubjects () — size ()
in num > minSubject and

(maxSubject = -1 or num < maxSubject);

operation juniors (): HierarchicalRole [«]
{ body: junior — closure (junior); }

We compute all authorizations of a subject by overwriting the
method getAuthorizations of class Authorization within the
subclass HierarchicalRole to return also the additional junior
roles. The implementation of getAllAuthorizations in the class
Subject picks up all explicit and implicit roles (and further autho-
rizations due to access extensions like delegations) for a proper
session check and other access constraints.

We consider this use of overwriting as the least evil for effec-
tively modeling role hierarchies as modular as possible and (mostly)
independent from other authorization constraints. An alternative
way would be to treat hierarchical roles as an access extension!
like delegation as explained later.

The reflexivity of role hierarchies can be left implicit but not
anti-symmetry. Anti-symmetry means that if several roles form a
cycle via their junior relation, then all roles of that cycle are actually
a single identical role. Therefore we ensure that role hierarchies are
non-cyclic by the invariant in Listing 3. (Another option would be
to regard a cycle as a single role with multiple alias names, but that
would allow one to specify unintended cycles by accident.) As a
side effect the given invariant also prevents explicit reflexivity.

Authorization Constraints. Having covered RBACy and role hierar-
chies for RBACy, we now present the typical role-based authoriza-
tion constraints that are all added independently. Other constraints

IThe method getAuthorizations of class Authorization could be avoided and the
class HierarchicalRole would need to implement the interface AccessExtension.

may be added as needed. The Constraint interface is basically
a common purpose indicator. (According to Sandhu, RBAC, with
constraints is RBAC,, whereas RBAC; and RBAC; is RBACs.)

The following invariants are straightforward; they rely on the
method getAllSubjects from the class Authorization. This meth-
od returns all subjects that explicitly or implicitly obtained the given
authorization/role. The methods getAllSubjects and getAllAuth-
orizations are opposites of each other like the explicit references
subject and authorization are between the corresponding two
classes. Only for mere RBACy or DAC there is no difference between
the references and the generalized methods.

Instead of computing invariants, it is also possible for diagnostic
output to compute those subjects that are violating an invariant. A
generic invariant as part of the Constraint interface may then be
that the number of violations is zero.

In any case hierarchical roles and access extensions like dele-
gation are transparently considered due to the methods getAll-
Subjects and getAllAuthorizations. The following paragraphs
show OCL invariants for cardinality constraints, mutually exclusive
roles, and prerequisite roles (Listings 4, 5, 6).

Cardinality. An often employed authorization constraint is a
restriction of the number of users/subjects having a certain im-
portant role. In our access control model with a possibly dynamic
user-to-role association we can ensure the validity of a cardinality
constraint by the OCL invariant given in Listing 4.

Mutually Exclusive Roles. For static or role-based separation of
duty (SoD) it is important to support role exclusion. In port com-
munity systems, for example, a shipper must not play the role of
customs because otherwise the shipper could control and approve
its own goods. In a healthcare context, the role of an internal doctor
should be different from a role of an external specialist to ensure
independent judgments. To model such scenarios, two or more roles
can be specified to be pairwise mutually exclusive so that a subject
can have at most one of those roles. The relation exclusiveRole
relates each role to other excluded roles. The OCL invariant for role
exclusion is shown in Listing 5.

Prerequisite Roles. Other desirable authorization constraints are
prerequisite roles. For certain roles, other roles may be defined to be
prerequisites. This is similar to a role hierarchy as this constraint
also forms a partial order. In contrast to a role hierarchy where a
subject implicitly inherits junior roles, prerequisite roles must have
been assigned in advance. Similar to role hierarchies cycles for

Listing 5: Role exclusion

invariant noSubjectsAssignedToExclusiveRoles:
exclusiverole.getAllSubjects () —
forAll(s|s.getAllAuthorizations () —
intersection (exclusiverole) — size() < 1);

E MaxDelegations

T maxNumber : Elnt

[1..1] delegationRelation,

E Role
= name: EString
&% subject: Subject
&% permission : Permission

[1..1] requiredGrantorRole

[DelegationRelation]

)

[1..1] requiredDelegateRole

AL

[1..1] delegatedRole

prerequisite roles should be avoided since assigning a single role
of such a cycle to a subject would directly violate the constraint.
Disregarding cycles, the OCL invariant for prerequisite roles is
shown in Listing 6.

Listing 6: Prerequisite roles

invariant prerequisiteRoles:
dependent. getAllSubjects () —
forAll(s|s.getAllAuthorizations () —
includesAll (required));

4.3 Delegation

An important access control concept that we discuss here is role-
based delegation. Delegation means to temporarily transfer rights
from one subject to another. We model delegation as presented in
Figure 4.

e Delegation models a grantor that can delegate a role to a
delegate if the grantor has the requiredGrantorRole and
the delegate has the requiredDelegateRole.

e DelegationRelation merely groups together the three roles
requiredGrantorRole, requiredDelegateRole, and the de-
legatedRole in order to make them reusable for different
subjects being grantors or delegates.

e Duration is the duration of a delegation. The delegation is
automatically revoked after the given timeout.

e MaxNestinglLevel defines how deep delegations (given by
the forwardings and inverse backtrace links) may be nested.

e MaxDelegations is a (kind of cardinality) constraint that
limits the number of subjects that can be delegates.

The extra delegation relation should stress the view that dele-
gation is a ternary relation between roles: the required role of a
grantor, the required role of a delegate, and the delegated role. Any
member having the required role of a delegate may potentially also
have the delegated role—provided that a grantor with the required
grantor role actually issued the delegation successfully. A typical
constellation, however, is that the required grantor role is equal
to the delegated role. In Figure 6 a doctor delegates his role to a
specialist that has the required role of a delegate. A required role
may have been obtained via an explicit role assignment or implicitly
via a senior role or via a prior delegation. In fact, the possibility to
delegate a role further is an important aspect of delegation that can
be controlled via the maximal nesting depth.

An actual delegation object is created whenever a role is success-
fully delegated. A delegation object points to the grantor and the
delegate. We have a delegation chain if a delegate is also the grantor
of the same role to another delegate in a subsequent delegation. To
obtain the delegated roles of a subject, all delegations need to be
collected. If the subject is the delegate, then the subject also has

[1..1] delegationRelation

‘ 2\3 AccessExtension ‘ | H Duration

5 startTime : Timestamp
5" endTime: Timestamp

[1..1] duration

‘ S_ getAuthorizations() : Authorization

[0..*¥] accessextension

!
[0..¥] subject :
!
L

‘ ZH Subject [0..*] delegation

[1..1] grantor

H Dpelegation

= name: EString
?* getAllAuthorizations() : Authorization
&3 authorization : Authorization

1..1] delegate
o1 9 D@*getAuthorizationsO:Authorization

[0..1] backtrace ? nestingDepth() : EInt

[0..*] forwardings [1..1] delegation’

D MaxNestingLevel

' maxDepth : EInt

Figure 4: Delegation class diagram

Listing 7: Depth of nested delegations

operation nestingDepth (): EInt

{ body: if backtrace = null then 1
else 1 + backtrace.nestingDepth ()
endif }

the delegated role. If the delegated role is hierarchical, then also all
junior roles are delegated implicitly.

Like hierarchical roles, delegation extends access. The difference
is that delegations add roles to subjects, whereas hierarchical roles
are only indirectly related to those subjects that have a senior role.
This makes treating hierarchical roles and delegation in a uniform
way awkward. We preferred two generic ways to extend access. The
first generic way is to override the method getAuthorizations
from Authorization as done for hierarchical roles. The other
way is by implementing the interface AccessExtension. Every
instance of an AccessExtension adds further authorizations to
its connected subjects via the method getAuthorizations that
needs to be implemented. For a delegation as an access extension
the delegate is the only connected subject and the result returned
by getAuthorizations is the singleton set of the delegated role.
When computing all authorizations of a subject or all subjects of
an authorization, all instances of access extensions are taken into
account.

There seems to be no need to delegate a role that is already ex-
plicitly or implicitly assigned to subject, but it may make sense to
create a new delegation before an old (otherwise identical) delega-
tion times out. Without a reasonable timeout, delegation is unneces-
sary because roles should be directly assigned (by an administrator)
for long terms. The duration is also important for nested delega-
tions. We require that a forwarded delegation cannot last longer
than the original delegation. Otherwise delegation chains would be
broken apart if delegation objects are removed after their timeout.
This is not crucial but changes the nesting depth of longer lasting

forwarded delegations. The depth of nested delegations can be re-
cursively computed along the backtrace links as shown in Listing
7. The constraints MaxLevel and MaxDelegations are added on
top of the core delegation concept. For the maximum number of
delegations, we decided to count delegations for every delegation
relation separately as shown in Listing 8.

Listing 8: Maximum number of delegations

Listing 9: Context constraint

abstract class ContextConstraint { interface } {
operation isAllowed(s:Subject ,r:Resource): Boolean;

}

invariant maxDelegations:
delegationRelation . delegation — size () < maxNumber

A separate delegation relation is strictly unnecessary but a de-
sign choice to increase modularity. The three roles of an delegation
relation make up a kind for delegations. Each delegation does not
need to refer to the three roles directly but only to a single and
usually shared delegation relation. The presented delegation model
is still experimental as it differs from earlier work [34, 36]. Yet, we
consider our design to be more modular and clearer. Not only for
the sake of brevity, we omit explicit revocations and entirely rely on
timeouts. As mentioned before, classical user-to-role assignments
should be used in favor of delegations without timeouts. For ex-
ceptional premature revocations, administrators may be allowed to
reduce the durations of delegation chains.

4.4 Authorization contexts

As motivated by Kumar et al. [25] and many others [4, 5, 18, 23,
34] we want to support context-awareness. A context constraint
is a condition that must be fulfilled whenever a subject is going
to interact with a resource which may also mean to execute an
operation. (We view operations as resources, too.) In contrast to
the rather static role constraints, context constraints allow one to
tune access in an arbitrary, very dynamic and fine-grained way.

For example in healthcare, a doctor may be allowed to only read
or modify the records of her own patients. Another scenario may
allow a doctor to read the data records of a type that matches the
doctor’s specialization. In a PCS, a port order may only be adminis-
tered by those members of a company or department that issued
this order; a policy termed multi tenancy. Data of different users
can be kept apart, despite all users having the same (or overlapping)
roles (or even no roles at all).

Generally, granting permissions may depend on any part of a
concrete system state (and its history), for instance on the time (of
a day), the location (from which a person has logged in), or the
type of accessed resources corresponding to history-based, time-
based, location-based, or type-based access control, respectively.
Hu and Weaver [18] identify the following data as basic for context
constraints:

e PersonID - the one sending the request;
e ResourcelD - the particular resource to consult;

e ResourceType - the type of the resource;

o Time - the date of issuance of this request;

e Location - the location of the access request.

A context constraint is an arbitrary Boolean formula taking a
subject and a resource (or their identities via IDs) as input; it can be
evaluated for a concrete system state, i.e. for concrete values of the
time, location, person and resource. We include context constraints

by merely adding the interface ContextConstraint with a single
isAllowed Boolean operation.

Implementations must be supplied as needed. The Boolean func-
tion can be seen as a basic ABAC policy rule that describes for
any subject and resource if access is allowed or denied. Relevant
and reliable attributes to be queried must be made accessible via
domain-specific subclasses of the classes Subject, Resource (see
Figure 5) and State. (We assume here that the current state of a sys-
tem is globally accessible to avoid an extra argument.) An example,
demonstrating multi tenancy, is shown in Listing 10 where com-
pany attributes of subjects and resources must match. Time-based,
location-based, or type-based access control is merely a question of
attribute choices. Like time also history? may be part of the current
state allowing for history-based access control without a temporal
logic. With proper attributes we can also simulate mandatory access
control (MAC) [11, 28], a Chinese Wall policy, or dynamic separation
of duty (DSoD) [4] where privileges may depend on decisions made
in the past. Even roles can be seen as attributes with an obvious pol-
icy. However, we do not want to combine RBAC with ABAC in an
attribute-centric way but in a role-centric way [24]. For a runtime
simulation of access control policies or enforcements, all instances
of context constraints need to be evaluated. The conjunction of all
isAllowed results must be true. Beforehand, we additionally check
the static authorizations via roles.

Like Hu and Weaver [18] we want to group our context con-
straints by type. A context type is just a restriction of the kind
of formulas in context constraints. We can do so by introducing
subclasses of ContextConstraint as shown in Figure 5. The im-
plementations TimeConstraint, TypedConstraint, and Company-
Check (see Listing 10) are application dependent and based on corre-
sponding subclasses SubjectWithResourceType, CompanySubject
and CompanyResource of the respective Subject and Resource
known from Figure 3. TimeConstraint is supposed to constrain
access to opening hours whereas TypedConstraint models type-
based access control so that subjects can only access specifically
typed resources.

Typically, ABAC policies can be specified in sophisticated ways,
for example, extra application conditions may be given for either
allowing or denying access. Denial is negation of allowance and
applicability conditions correspond to implications. In any case,
eventually, allowing or denying access is a binary decision made
by our isAllowed operation. OCL may not be the best formalism
to express context conditions, but OCL is crucial for our simulation
methodology and we hope to translate ABAC policies automatically
to OCL.

Future work. Like our delegation we regard these authorization
contexts as experimental and hope to further conform to proper

2Storing large parts of the history is usually necessary anyway for mere accountability
reasons.

% Authorization

H ContextConstraint
(-]

- @
@ isAllowed(s Subject, r Resource) : EBoolean

0. getAuthorizations() : Authorization
&, getallsubjects() : Subject

8 getpermissions() : Permission

[0.#] authorization

! [0.#4] subject

| E TimeConstraint | k=] Subject |
@

? isAllowed(s Subject, r Resource) : EBoolean [| = name : EString
@

[E Permission }

(J

g 8 l [0..4] permits

* openTime : TimeOfDay o izations() : Authorization
* closeTime : TimeOfDay I3 ion :

[E TypedConstraint] H Resource }

=] SuhjectW\thResaurceType] |
=
T

@ isallowed(s subject, r Resource) : EBoolean| |

[E companysubject]
[T company : EString J

H companyCheck]

resourceType :Estring | | || resourcelD : Estring|

B CompanyResourcel
=
T

[@ isallowed(s subject, r Resource) : EBoolean company :Estring |

Figure 5: Domain-specific class diagram

ABAC on the one hand and also allow context conditions to be
less role-agnostic on the other hand. Already Kumar et al. [25]
considered a role context between a subject and a resource context.
A role could not only describe a job function but also list a couple
of attributes that are guaranteed to exist for role-centric context
checks. From role-aware contexts, viewed as roles with contexts,
also delegations could profit, allowing roles restricted by a context
to be delegated or to be required for a delegation.

5 EVALUATION

The evaluation of our modeling approach is carried out via case
studies in three specific domain areas. We evaluate a Port Com-
munity System (PCS), a clinical information system (Section 5.2),
and an identity management system from industry. These systems
employ different access control policies and we show how they
can be appropriately modeled using our modular model. According
to our methodology, we inspect byte code and extract the imple-
mented access control policy for the identity management system
in Section 5.3.

5.1 A port community system

The international port community system association (IPCSA) [20]
defines a PCS as a neutral and open electronic platform enabling
intelligent and secure exchange of information between multiple
systems operated by a variety of organizations that make up a
seaport community. Our PCS is an application based on JavaEE
technologies and proprietary frameworks. The software adminis-
ters, records, and controls the communication between the different
parties of the port area. Many features like data hosting (cloud ser-
vice) or software as a service (SaaS) are accessible from anywhere
via the web, which naturally poses problems with respect to data
access control. Some of the numerous involved parties are listed
below.

o Shippers or carriers actually want to export, import, or sim-
ple transfer goods via the port. They initiate port orders.

e Shipowners provide the transport capabilities. They receive
copies of port orders for their ships and can themselves issue
orders (like shippers) to maximally utilize their cargo space.

e The customs has ultimate control over the goods being im-
ported or exported. It does so by selecting and controlling a
small sample of containers or conventional goods. The PCS
provides movement information to the customs and redirects

customs clearances or customs control orders back to the
affected parties.

e The port authority is informed about port orders involving
dangerous goods to ensure timely and appropriate response
in case of hazards.

e The Terminal Operating System (TOS) administers storage
locations at the port and controls required clearances be-
fore goods are actually moved. All related port orders are
transmitted via the PCS. (The storage locations determine
the responsible customs office.)

o The tally is responsible for all packing, unpacking, loading,
unloading, or (container) movement orders at the port.

o The railway is an alternative for transport orders.

The original port order of a client (i.e. a shipper) is supplemented
by the PCS with additional data like ship or storage location data.
The completed order will be distributed to the other involved parties
but usually without (client) data that are not relevant for them.

Discussion. For our modeling we took the above list of parties
as roles and associated permitted tasks to them. An important
task of the customs is to supply (or refuse) clearance to a port
order. According to Step 1 of our methodology in Section 4.1, port
orders are resources that are modified by operations. Especially
for a customs clearance we required that only the customs can
perform this task and that there is only a single customs at all
(which we assume to be true for a single country). Thus for the
role customs we introduced the cardinality constraint as shown in
Listing 4 with maxSubject being 1. Furthermore, we added a static
role exclusion to prevent that the same subject? can both create and
supply clearance to port orders. For the invariant of role exclusions
see Listing 5.

Apart from creating a port order, shippers may also modify or
cancel port orders, but only those that have been created by the
shipper’s company. This is a classical context constraint known as
multi-tenancy that can be checked by implementing isAllowed as
given in Listing 10, where we carefully do not restrict access of
subjects to resources that are not related via the company subtypes.

Listing 10: Company context constraint

class CompanyCheck extends ContextConstraint

operation isAllowed(s:Subject,r:Resource): Boolean

{ body:

not s.oclIsKindOf(CompanySubject) or

not r.oclIsKindOf(CompanyResource) or
s.oclAsType (CompanySubject). company =
r.oclAsType (CompanyResource). company }

We created EMF object diagrams for the PCS based on (semi-)
formal specification and documentations of the business processes.
This corresponds to Step 2 of our methodology. Source or byte
code was not disclosed to us, therefore we could not evaluate if
access control is actually enforced as intended according to our
methodology’s Step 3.

Result. The modeling allowed us to design a target policy and
check its consistency (Step 4 and Step 5). The main result is that

3Due to the cardinality constraint there can only be one subject—e.g., the customs
system called “Atlas” in Germany—that must not also play the shipper role.

we identified role exclusions, cardinality constraints, and no role
hierarchy—this is RBAC,—, but also dynamic multi-tenancy context
constraints. Due to the separation of hierarchical roles our object
diagrams are not cluttered with empty references to junior or senior
roles.

5.2 A clinical information system

Gerdes evaluated a role-based security concept for clinics consid-
ering trends of electronic health data management [14]. Via in-
terviews she investigated the actual process flow within clinics
in order to derive suggestions for improvements, especially with
regard to protecting sensitive patient data. Usually, clinics feature
four (RBACy) roles: doctors, nurses, allied healthcare professionals
and support staff.

Tietjen took the above work as case study for validating an RBAC
model with OCL constraints [36]. He considered two roles: recep-
tionists and doctors. Patients have no roles, they are represented as
mere data records in the clinical information system. A receptionist
assigns an arriving patient to a hospital ward. Each ward has a
responsible doctor. There is a role exclusion between receptionists
and doctors. The receptionist has only access to the identifying data
of patients, whereas a doctor has only access to electronic health
records of patients of her ward. Viewing the ward as a location, we
can establish a location context constraint similar to the company
context constraint of Listing 10.

We also considered a cardinality constraint stating that there is
exactly one doctor responsible for each ward. However, this is no
static cardinality constraint for the number of all doctors, there-
fore our RBAC cardinality constraint in Listing 4 is not directly
applicable.

Discussion. Having exactly one responsible doctor poses the
question what should happen if a doctor is not able to properly
treat all patients? One solution may be to ask the receptionist to
assign a patient to another hospital ward. Another way may be
to ask a senior doctor responsible for several wards or the whole
clinic. A senior doctor would be a part of a role hierarchy (RBAC)
allowing at least the accesses of all junior doctors.

In order to avoid costly changes of user-to-role assignments—to
be done by administrators—, permission-to-role assignments tend
to include more permissions than necessary to avoid a potential
critical lack of permissions. This contradicts to the principle of
least privilege. A more appropriate way is to use delegation. A
doctor could simply delegate her responsibility to another colleague.
However, it makes no sense to delegate the doctor role to another
clinician who has already this role. Our role-based delegation model
has no idea about doctors for different wards as long as there is
only one doctor role. We need different doctor roles for every ward.
This would also solve the above cardinality constraint, but such a
role inflation might be undesirable. Therefore we are still looking
for improvements of our access control model. An idea may be to
attach contexts to roles and to obtain something like parameterized
roles, i.e. roles parameterized by a ward attribute or an arbitrary
context condition.

Another typical scenario is a clinical consultation. A patient’s
data must be made accessible to an external specialist. Figure 6
illustrates how a doctor delegates her role to a specialist to share

Doctor:Role
authorization

delegatedRole

A grantor
duration requiredGrantorRole

‘DoctorToSpemaMst:De\egat\on lmb‘ :DelegationRelation ‘
delegate

l requiredDelegateRole
Specialist:Person authorbation Specialist:Role

Figure 6: Delegation example object diagram

a patient’s data. The delegation relation connects to the two re-
quired roles and to the delegated doctor role (bold connection). The
delegation object DoctorToSpecialist points to a duration, a del-
egation relation, the grantor Doctor, and the delegate Specialist.
The doctor has the required grantor role and the specialist has the
required delegate role.

Assuming that the specialist is an external person we could
restrict the delegation to a maximum nesting depth of one—using an
object instance of class MaxNestinglLevel with a maxDepth value
of 1 (see Figure 4)—to disallow that the doctor role is delegated
further.

An implementation of a clinical information system (CIS) could
not be inspected within this case study. Only reports of users about
shortcomings of existing systems have been considered. Due to
sensitive patient’s records the healthcare domain is a particularly
challenging field for access control as also Hu and Weaver [18] and
[2] show.

Result. The aim of this case study was to demonstrate that our
RBAC model with OCL constraints and delegation was suitable
to properly model the demanding policies of a clinical informa-
tion system. Apart from validating consistency for intended target
policies of a CIS using EMF [35] we also translated Ecore to UML
and employed the USE tool [15] in order to compare validation
results. Regarding tool support for OCL there is certainly room
for improvements as also Abomhara et al. [2] report. Regarding
the modeling, the case study shows that context constraints may
clash with role-based delegation for a single doctor role. Using mere
context constraints or ABAC-like access rules is certainly possi-
ble, but one still wants more or less fine-grained roles and flexible
context-sensitive delegations. Otherwise a critical lack of permis-
sions or—the opposite—violating the principle of least privilege are
likely problems.

5.3 An identity management system

In a joint project with a large company the aim was to check the
company’s access control policy for business partners against the
information stored in a separate identity management repository.
The repository stores information on persons, logins, contracts,
permissions, roles and the corresponding assignments. For the
corresponding identity management system (IdMS) the company
provided us the binaries and sources of their code. The software is
divided into three JavaEE components using the technologies Java
Server Faces (JSF), Spring and JBoss Seam. Furthermore, the Java
Persistence API (JPA) and the Cassandra API are used for database
connections. For specifying the policy the company supplied us
with business process model and notation diagrams.

Listing 11: Model-to-model transformation excerpt

transformation DataModelToAccessControlModel (
in input: low, out output: acm);
main () {
input.rootObjects () [login]
— map toLogin ();
input.rootObjects () [person]
— map toPerson ();
}
mapping login::toLogin ()
permissions::Login {
}
mapping person::toPerson ()
permissions::Person {
logins := self.contracts
— collect(profiles)
— collect (logins)
— resolve(permissions::Login) }

The challenge was to automatically translate the implemented
RBAC model to our formal approach. Therefore, we (a) used reverse
engineering to extract an internal data-model definition, (b) created
a transformation for data-model instances into object diagrams of
our formal model, (c) identified permissions and roles provided by
a web front-end, (d) transformed this enforcement, and (e) semi-
automatically extracted expected executions. The tasks (a) and (b)
accomplish Step 1 of our methodology in Section 4.1. For Step 2 we
manually defined the workflow and the intended policy based on
supported business process model and notation diagrams. Tasks (c)
and (d) correspond to Step 3 and the task (e) matches Step 4 that is
the basis for Step 5, namely to check the extracted object diagrams
against the specifications of Step 2. In the following, we explain the
aforementioned tasks in more detail.

(a) We reverse engineer the software’s data-model by evaluat-
ing the JPA annotations @Entity, @Embeddable, @Table,
@Column, @ManyToOne, @OneToMany, and @Transient
present in byte code. The static analysis transfers the anno-
tations and the type information into a valid Ecore model
with 115 classes. The data stored in the data base can be auto-
matically converted into an object diagram of the extracted
Ecore model. The extraction and conversion is transferable
to other programs using JPA.

(b) For extracting the resources and creating the initial state,
14 of the above extracted classes hold relevant information
for the transformation to model. For these classes we imple-
mented a model-to-model transformation using QVTo [37].
The transformation translates object instances of the internal
data-model into resource instances of our software model.
Since this transformation depends on the used data-model,
it is not transferable to other programs.

(c) In this step, we implemented a static analysis to extract
enforced permissions and roles. Starting from identified pro-
gram entry points we collected calls to the IdMS-API method
for checking whether a user has a certain authorization. This
method—actually named hasPermission—receives a string
argument denoting the authorization label that is required to

execute the code. The labels are following a naming conven-
tion. For example, role names started with the prefix role.
This led us to introduce the super class Authorization for
roles and permissions. To reuse this analysis it is necessary
to adapt it to other authorization APIs such as Apache Shiro.
The hasPermision method can be easily replaced by another
method to search for; the naming convention, however, is
an artifact of the analyzed system.

Similar to (b) we implemented a model-to-model conversion
for subjects, permissions and roles. The excerpt in Listing 11
shows how multiple logins of persons are directly attached
to the persons that are only indirectly given in the internal
data-model via contracts and profiles. The available permis-
sions and roles are stored in the same data class that can be
distinguished by the prefix of the name attribute. The data-
model provides means to express a hierarchy between the
different elements. Since privileges are inherited to children,
this may lead to the situation where a role can be the child
of a permission, contradicting all approaches from academia.
Furthermore, it is possible to directly assign permissions to
a user, contradicting the RBAC96 model.

The executions corresponding to Step 4 of our methodology
were created semi-automatically based on the Seam con-
figuration, the JSF servlets, and their usage dependencies.
Therefore, we parsed the JSF files, extracted display masks
and their usage relations, and identified calls to the Java im-
plementation. In a manual step we then grouped these masks
into higher-level processes and execution paths. The extrac-
tion of the masks and their usage relation can be used for
any program that employs the aforementioned frameworks.

d

Nad

(e

~

Results. We used several static analyses of the underlying byte code
as well as configurations to obtain a model and used further model-
to-model transformations to obtain model instances for validating
the user and permissions against a manually defined access control
policy. The analyzed identity management system combined RBAC
and DAC features. As a preparation step of validation, we had to
divide the model instances into independent parts to accelerate
the analysis. This was necessary to overcome some memory is-
sues because there were over a hundred thousand assignments in
the generated instance model. The preparation also reduced the
execution time for validating some constraints below 30 minutes.
Generally, validations taking longer have been aborted and consid-
ered as failing thus leading only to a partial result.

Due to the modularity of our approach, the model instances
could be given succinctly and cleanly without any—even void—
connections to concepts like delegations. In particular for validation
any avoided boiler plate or overhead is beneficial.

All the aforementioned reverse engineering tasks are imple-
mented as plugins for the Soot analysis framework [38]. The ma-
jority of the analyses is transferable without or with only a few
adaptions to other programs, so it is possible to transfer this method.

6 DISCUSSION

The approach we have introduced allows us to test the implemented
and planned security policies against each other and find execution

paths that lead to insecure states from a policy perspective. Still,
there are many possibilities to improve or enhance this approach.

At the moment, we focus on the intended usage of the applica-
tion by modeling traces from existing use cases or business process
model diagrams. Security flaws detected using these traces could
be exploited by users in their normal daily work, even by accident.
A shortcoming of this approach is that none of our partner compa-
nies provide misuse cases for their software. Misuse cases are use
cases where a misuser reaches an attack target without the system
preventing it [32]. Misuse case would allow us to identify vulnera-
bilities that an attacker could try to exploit. There are different ways
to generate such misuse cases. One could create new executions
and traces totally randomly, to simulate an attacker that tries attack
steps in any order. Another possibility is to mutate existing traces
and executions. This way one could simulate attackers who try to
mess with the existing workflows to find possible security flaws.
Nevertheless, it is obvious that this can improve the number of
tested traces, but it is not possible to guarantee a secure software.

A disadvantage of our approach is the execution time of the
model validation. Depending on the number of objects (including
traces, operations, subjects, and policy entries) it can increase to
a point where the results take longer than about 30 minutes to be
calculated. There are different ways to improve this issue. At the
moment we calculate all states of all traces before we validate the
model. We observed traces where the model was insecure after a
very small number of executions of a trace, but we still calculated
and checked the complete trace. It would be possible to check each
step directly after it has been calculated and stop a trace whenever
an execution leads to an insecure state. A more elaborated approach
would be to identify equal program states to avoid states that have
already been inspected. Another alternative for our execution traces
may be filmstrip models [16].

Our approach analyzes the implementation of productive soft-
ware systems. However, this necessitates access to the respective
implementation. In some of our projects, access was not so easy to
obtain, as companies have security concerns about giving the soft-
ware to external third parties. Therefore, we designed our method-
ology so that we can omit reverse engineering steps. As a result, a
policy cannot be checked against the implementation, but never-
theless, traces can be checked against the policy.

The reverse engineering part of our approach is heavily depen-
dent on the software frameworks used by the analyzed system.
There is quite a large number of existing security frameworks for
different languages and technical domains, e.g., JEE, Spring, Apache
Shiro, and Android Framework. Since it is nearly impossible to
support all frameworks, it is necessary to create new static secu-
rity analyses for different authorization aspects that can be easily
configured to support new frameworks instead of being tediously
programmed. Our approach would benefit from analyses that ex-
tract the effect of operations to the state of our model. Otherwise
the manual modeling of the behavior is a time-consuming and
eIror-prone process.

7 CONCLUSIONS

We presented a novel modular access control model and a method-
ology to extract model instances from existing software.

Apart from DAC, we support classical RBAC concepts such
as role hierarchies and authorization constraints like cardinality
constraints, mutually exclusive roles, and prerequisite roles. Fur-
thermore, role-based delegation as well as highly flexible but role-
agnostic context constraints as a basic version of ABAC are covered.

The modularity of our access control model ensures the applica-
bility to a wide range of software without any overhead for aspects
not present in a given system. In particular for OCL validation,
succinct model instances are highly desirable.

We evaluated our approach for three software systems from
different domains. A port community system (PCS) and a clinical
information system demonstrate our rich and modular modeling
capabilities. For an identity management system we actually ex-
tracted model instances from Java byte code and configuration files
according to our methodology. The violations of OCL invariants
indicated vulnerabilities of the underlying system.

The three case studies also revealed certain shortcomings of our
access control model left for future work. Despite unifying vari-
ous concepts their interrelations may be improved. As an example
we discussed the combination of role-based delegation and role-
agnostic context constraints for the clinical information system.
Also using EMF with OCL disclosed limits that are difficult to as-
sess. However, we expect our approach to be rather stable and yet
extensible.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry of Edu-
cation and Research (BMBF) under the grant 16KIS0583 (PortSec
project) and the German Federal Ministry for Economic Affairs and
Energy (BMWi) under the grant ZF4123903ED6 (Certified Appli-
cations) and the German Federal Ministry of Transport and Digi-
tal Infrastructure (BMVI) under the grant 19H18012E (SecProPort
project). The work of Carlos Rubio-Medrano was partially sup-
ported by grants from the United States National Science Founda-
tion (NSF-IIS-1527268 and NSF-ACI-1642031).

REFERENCES

[1] Marwan Abi-Antoun and Jeffrey M. Barnes. 2010. Analyzing Security Ar-
chitectures. In Proceedings of the IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE °10). ACM, New York, NY, USA, 3-12. https:
//doi.org/10.1145/1858996.1859001
Mohamed Abomhara and Mehdi Ben Lazrag. 2016. UML/OCL-based Modeling
of Work-Based Access Control Policies for Collaborative Healthcare Systems.
In 2016 IEEE 18th International Conference on e-Health Networking, Applications
and Services (Healthcom). IEEE, Munich, Germany, 1-6. https://doi.org/10.1109/
HealthCom.2016.7749461
Gail-Joon Ahn and Ravi Sandhu. 1999. The RSL99 Language for Role-Based
Separation of Duty Constraints. In RBAC ’99: Proceedings of the Fourth ACM
Workshop on Role-Based Access Control. ACM, New York, NY, USA, 43-54. https:
//doi.org/10.1145/319171.319176
[4] Gail-Joon Ahn and Ravi Sandhu. 2000. Role-based Authorization Constraints
Specification. ACM Transactions on Information and System Security (TISSEC) 3, 4
(April 2000), 207-226. https://doi.org/10.1145/382912.382913
Gail-Joon Ahn and Michael E. Shin. 2001. Role-based Authorization Con-
straints Specification Using Object Constraint Language. In Proceedings Tenth
IEEE International Workshop on Enabling Technologies: Infrastructure for Col-
laborative Enterprises. WET ICE 2001. IEEE, Cambridge, MA, USA, 157-162.
https://doi.org/10.1109/ENABL.2001.953406
[6] Ezedin Barka and Ravi Sandhu. 2000. Framework for Role-Based Delegation
Models. In Proceedings of the 16th Annual Computer Security Applications Con-
ference (ACSAC "00). IEEE Computer Society, Washington, DC, USA, 168-176.
https://doi.org/10.1109/ACSAC.2000.898870
[7] David Basin, Manuel Clavel, Jirgen Doser, and Marina Egea. 2009. Automated
analysis of security-design models. Information and Software Technology 51, 5

[2

—_
A

—
)

https://doi.org/10.1145/1858996.1859001
https://doi.org/10.1145/1858996.1859001
https://doi.org/10.1109/HealthCom.2016.7749461
https://doi.org/10.1109/HealthCom.2016.7749461
https://doi.org/10.1145/319171.319176
https://doi.org/10.1145/319171.319176
https://doi.org/10.1145/382912.382913
https://doi.org/10.1109/ENABL.2001.953406
https://doi.org/10.1109/ACSAC.2000.898870

=

=

(2009), 815-831. https://doi.org/10.1016/j.infsof.2008.05.011

David Basin, Manuel Clavel, and Marina Egea. 2011. A Decade of Model-driven
Security. In Proceedings of the 16th ACM Symposium on Access Control Models and
Technologies (SACMAT °11). ACM, New York, NY, USA, 1-10. https://doi.org/10.
1145/1998441.1998443

David Basin, Jiirgen Doser, and Torsten Lodderstedt. 2006. Model Driven Security:
From UML Models to Access Control Infrastructures. ACM Transactions on
Software Engineering and Methodology (TOSEM) 15, 1 (Jan. 2006), 39-91. https:
//doi.org/10.1145/1125808.1125810

Bernhard J. Berger, Karsten Sohr, and Rainer Koschke. 2013. Extracting and
Analyzing the Implemented Security Architecture of Business Applications. In
17th European Conference on Software Maintenance and Reengineering (CSMR
2013). IEEE, Genova, Italy, 285-294. https://doi.org/10.1109/CSMR.2013.37
National Computer Security Center. 1985. Department of Defense Trusted Com-
puter System Evaluation Criteria. Department of Defense. DOD 5200.28-STD
(supersedes CSC-STD-001-83).

Antanas Cenys, Andrius Normantas, and Lukas Radvilavicius. 2009. Designing
role-based access control policies with UML. Journal of Engineering Science and
Technology Review 2, 1 (July 2009), 48-50. https://doi.org/10.25103/jestr.021.09
David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. 2007. Role-
Based Access Control (2nd ed.). Artech House, Inc., Norwood, MA, USA.
Stefanie Gerdes. 2007. Rollenbasiertes Sicherheitskonzept fiir Krankenhduser unter
Beriicksichtigung der aktuellen Entwicklungen in der Gesundheitstelematik. Mas-
ter’s thesis. Universitit Bremen.

Martin Gogolla, Fabian Biittner, and Mark Richters. 2007. USE: A UML-based
specification environment for validating UML and OCL. Science of Computer
Programming 69, 1-3 (Dec. 2007), 27-34. https://doi.org/10.1016/j.scico.2007.01.
013

Martin Gogolla, Lars Hamann, Frank Hilken, Mirco Kuhlmann, and Robert France.
2014. From Application Models to Filmstrip Models: An Approach to Automatic
Validation of Model Dynamics. In Modellierung 2014 (LNI), Hans-Georg Fill, Dim-
itris Karagiannis, and Ulrich Reimer (Eds.), Vol. P225. Gesellschaft fiir Informatik
eV., Bonn, 273-288. https://dl.gi.de/20.500.12116/17056

Martin Gogolla and Frank Hilken. 2016. Model Validation and Verification
Options in a Contemporary UML and OCL Analysis Tool. In Modellierung 2016
(LNI), Andreas Oberweis and Ralf Reussner (Eds.), Vol. P254. Gesellschaft fiir
Informatik eV., Bonn, 205-220. https://dl.gi.de/20.500.12116/825

[18] Junzhe Hu and Alfred C. Weaver. 2004. A Dynamic, Context-Aware Security

Infrastructure for Distributed Healthcare Applications. In First Workshop on
Pervasive Security, Privacy and Trust (PSPT '04). Boston, MA, 8.

Vincent C. Hu, D. Richard Kuhn, and David F. Ferraiolo. 2015. Attribute-Based
Access Control. Computer 48, 2 (Feb. 2015), 85-88. https://doi.org/10.1109/MC.
2015.33

IPCSA. 2018. Retrieved January 4, 2019 from https://ipcsa.international

[21] Jan Jirjens. 2002. UMLsec: Extending UML for Secure Systems Development. In

UML 2002 — The Unified Modeling Language (LNCS), Jean-Marc Jézéquel, Heinrich
Hussmann, and Stephen Cook (Eds.), Vol. 2460. Springer, Berlin, Heidelberg, 412—
425. https://doi.org/10.1007/3-540-45800-X_32

Rainer Koschke and Daniel Simon. 2003. Hierarchical Reflexion Models. In 10th
Working Conference on Reverse Engineering, 2003. WCRE 2003. Proceedings. IEEE,
Victoria, British Columbia, Canada, 36-45. https://doi.org/10.1109/WCRE.2003.
1287235

Mirco Kuhlmann, Karsten Sohr, and Martin Gogolla. 2013. Employing UML
and OCL for designing and analysing role-based access control. Mathematical

[24

[25]

[26

~
=

[28

[29

[30

(31]

[32

&
&

[34

[35

[36

[37

[38

[39

Structures in Computer Science 23, 4 (Aug. 2013), 796-833. https://doi.org/10.
1017/50960129512000266

D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. 2010. Adding Attributes
to Role-Based Access Control. Computer 43, 6 (June 2010), 79-81. https://doi.
0rg/10.1109/MC.2010.155

Arun Kumar, Neeran Karnik, and Girish Chafle. 2002. Context Sensitivity in
Role-Based Access Control. ACM SIGOPS Operating Systems Review 36, 3 (July
2002), 53-66. https://doi.org/10.1145/567331.567336

Indrakshi Ray, Na Li, Robert France, and Dae-Kyoo Kim. 2004. Using UML To
Visualize Role-Based Access Control Constraints. In Proceedings of the 9th ACM
symposium on Access Control Models and Technologies (SACMAT '04). ACM, New
York, NY, USA, 115-124. https://doi.org/10.1145/990036.990054

Ravi Sandhu and Qamar Munawer. 1998. How to Do Discretionary Access
Control Using Roles. In Proceedings of the Third ACM Workshop on Role-based
Access Control (RBAC '98). ACM, New York, NY, USA, 47-54. https://doi.org/10.
1145/286884.286893

Ravi S. Sandhu. 1993. Lattice-Based Access Control Models. Computer 26, 11
(Nov. 1993), 9-19. https://doi.org/10.1109/2.241422

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
1996. Role-Based Access Control Models. Computer 29, 2 (Feb. 1996), 38-47.
https://doi.org/10.1109/2.485845

Michael E. Shin and Gail-Joon Ahn. 2000. UML-Based Representation of Role-
Based Access Control. In Proceedings IEEE 9th International Workshops onEnabling

Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2000). IEEE,
Gaithersburg, MD, USA, 195-200. https://doi.org/10.1109/ENABL.2000.883728

Adam Shostack. 2014. Threat Modeling: Designing for Security (1st ed.). John
Wiley & Sons.

Guttorm Sindre and Andreas L. Opdahl. 2005. Eliciting security requirements
with misuse cases. Requirements Engineering 10, 1 (Jan. 2005), 34-44. https:
//doi.org/10.1007/s00766-004-0194-4

Karsten Sohr and Bernhard Berger. 2010. Idea: Towards Architecture-Centric
Security Analysis of Software. In Engineering Secure Software and Systems (LNCS),
Fabio Massacci, Dan Wallach, and Nicola Zannone (Eds.), Vol. 5965. Springer,
Berlin, Heidelberg, 70-78. https://doi.org/10.1007/978-3-642-11747-3_6
Karsten Sohr, Mirco Kuhlmann, Martin Gogolla, Hongxin Hu, and Gail-Joon Ahn.
2012. Comprehensive two-level analysis of role-based delegation and revocation
policies with UML and OCL. Information and Software Technology 54, 12 (2012),
1396-1417. https://doi.org/10.1016/j.infsof.2012.06.008

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework (2nd ed.). Addison-Wesley, Boston, MA.

Daniel Tietjen. 2017. Validierung eines RBAC-Ecore-OCL-Modells mittels des USE-
Tools. Master’s thesis. Universitat Bremen.

Ulyana Tikhonova and Tim Willemse. 2015. Designing and Describing QVTo
Model Transformations. In Proceedings of the 10th International Conference
on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT
2015). SciTePress, Colmar, Alsace, France, 401-406. https://doi.org/10.5220/
0005556004010406

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization Framework. In
CASCON First Decade High Impact Papers (CASCON °10). IBM Corp., Riverton,
NJ, USA, 214-224. https://doi.org/10.1145/1925805.1925818

Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu. 2003. A Rule-Based Frame-
work for Role-Based Delegation and Revocation. ACM Trans. Inf. Syst. Secur. 6, 3
(Aug. 2003), 404-441. https://doi.org/10.1145/937527.937530

https://doi.org/10.1016/j.infsof.2008.05.011
https://doi.org/10.1145/1998441.1998443
https://doi.org/10.1145/1998441.1998443
https://doi.org/10.1145/1125808.1125810
https://doi.org/10.1145/1125808.1125810
https://doi.org/10.1109/CSMR.2013.37
https://doi.org/10.25103/jestr.021.09
https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1016/j.scico.2007.01.013
https://dl.gi.de/20.500.12116/17056
https://dl.gi.de/20.500.12116/825
https://doi.org/10.1109/MC.2015.33
https://doi.org/10.1109/MC.2015.33
https://ipcsa.international
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1109/WCRE.2003.1287235
https://doi.org/10.1109/WCRE.2003.1287235
https://doi.org/10.1017/S0960129512000266
https://doi.org/10.1017/S0960129512000266
https://doi.org/10.1109/MC.2010.155
https://doi.org/10.1109/MC.2010.155
https://doi.org/10.1145/567331.567336
https://doi.org/10.1145/990036.990054
https://doi.org/10.1145/286884.286893
https://doi.org/10.1145/286884.286893
https://doi.org/10.1109/2.241422
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/ENABL.2000.883728
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1007/978-3-642-11747-3_6
https://doi.org/10.1016/j.infsof.2012.06.008
https://doi.org/10.5220/0005556004010406
https://doi.org/10.5220/0005556004010406
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/937527.937530

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Approach
	4.1 Methodology
	4.2 Modeling RBAC
	4.3 Delegation
	4.4 Authorization contexts

	5 Evaluation
	5.1 A port community system
	5.2 A clinical information system
	5.3 An identity management system

	6 Discussion
	7 Conclusions
	Acknowledgments
	References

