
Towards System Integrity Protection
with Graph-Based Policy Analysis

Wenjuan Xu1, Xinwen Zhang2, and Gail-Joon Ahn3

1 University of North Carolina at Charlotte
wxu2@uncc.edu

2 Samsung Information Systems America
xinwen.z@samsung.com

3 Arizona State University
gahn@asu.edu

Abstract. Identifying and protecting the trusted computing base (TCB) of a sys-
tem is an important task, which is typically performed by designing and enforcing
a system security policy and verifying whether an existing policy satisfies security
objectives. To efficiently support these, an intuitive and cognitive policy analysis
mechanism is desired for policy designers or security administrators due to the
high complexity of policy configurations in contemporary systems. In this paper,
we present a graph-based policy analysis methodology to identify TCBs with the
consideration of different system applications and services. Through identifying
information flows violating the integrity protection of TCBs, we also propose
resolving principles to using our developed graph-based policy analysis tool.

1 Introduction

In an operating system, an information flow occurs when one process can write to a re-
source (e.g., device or file) which can be read by another process. Inter-process commu-
nication between these processes may also cause possible information flows. Integrity
goal is violated if there exists information flow from an unprivileged process to a privi-
leged process or between two different applications or services where information flow
should be controlled. In a typical system, information flows are controlled through se-
curity policies. Our objective in this paper is to provide an effective framework for
analyzing system security policies and finding policy rules causing information flows
with integrity violations.

There are several related approaches and tools to analyze policies based on certain
information flow models [1,9,11,16]. Most of these work focus on the identification of a
common and minimum system TCB which includes trusted processes for an entire sys-
tem. These approaches can analyze whether a policy meets security requirements such
as no information flow from low integrity processes (e.g., unprivileged user processes)
to system TCB (e.g., kernel and init). However, they cannot identify integrity violations
for high level services and applications that do not belong to system TCB. In practical,
other than system TCB protection, a high level application or system service is required
to achieve integrity assurance through controlling any information flowing from other

E. Gudes, J. Vaidya (Eds.): Data and Applications Security 2009, LNCS 5645, pp. 65–80, 2009.
c© IFIP International Federation for Information Processing 2009

66 W. Xu, X. Zhang, and G.-J. Ahn

applications. An existing argument in [20] clearly states the situation as follows: “a net-
work server process under a UNIX-like operating system might fall victim to a security
breach and compromise an important part of the system’s security, yet is not part of the
operating system’s TCB.” Accordingly, a more comprehensive policy analysis for TCB
identification and integrity violations is desired.

Another issue in policy analysis is the large size and high complexity of typical poli-
cies in contemporary systems. For example, an SELinux [12] policy has over 30,000
policy statements in a desktop environment. Under this situation, several challenges
exist for system designers or administrators in the context of policy analysis. We enu-
merate such challenges to derive the motivation of this paper: (1) Understanding and
querying a policy All previous policy query tools lack an effective mechanism for a
user to understand a particular policy. Furthermore, without understanding a policy, the
user even cannot figure out what to query; (2) Recognizing information flow paths In
the work of information flow based policy analysis [9,16], information flow paths are
expressed with text-based expressions. However, primitive text-based explanations can-
not provide appropriate degree of clarity and visibility for describing flow paths; and
(3) Identifying integrity violation patterns, inducements, and aftermaths In the work
of Jaeger et al. [11,17], they elaborate violation patterns using graphs. However, their
approach does not leverage the features and properties of graphs for analyzing policies
and identifying the causes and effects of integrity violations.

In this paper, we consider an information domain as a collection of subjects (e.g.,
processes) and objects (e.g., files, ports, devs) which jointly function for an applica-
tion or service. We further define the domain TCB as subjects which should have the
same integrity level in the domain. The integrity of the domain cannot be judged unless
information flows between this domain TCB and the rest of the system are appropri-
ately controlled. Based on these notions, we propose a domain-based integrity model.
Based on this model, we build a graph-based policy analysis methodology for identify-
ing policy rules that cause integrity violations (or simply policy violations). Our graph-
based approach can provide several benefits since information visualization helps a user
heuristically explore, query, analyze, reason, and explain obtained information. Also,
our graph-assisted approach simplifies analysis and verification tasks while rigorously
producing distinctive representation of analysis results. In addition, we describe a set
of principles for resolving identified policy violations in policy graphs. A graph-based
policy analysis tool (GPA) is also developed based on our approach.

The rest of this paper is organized as follows. Section 2 describes background and
some work related to our graph-based policy analysis. The principles and methodology
of our work are illustrated in Section 3. Section 4 presents how to develop and use
GPA for analyzing policies. In this section, we adopt SELinux policies as an example.
Section 5 concludes this paper presents our future work.

2 Background and Related Work

2.1 Trusted Computing Base

The concept of TCB partitions a system into two parts: the part inside TCB which is
referred as to be trusted (TCB) and the part outside TCB which is referred as to be

Towards System Integrity Protection with Graph-Based Policy Analysis 67

untrusted (NON-TCB). Therefore, the identification of TCB is always a basic prob-
lem in security policy design and management. The famous Orange Book [2] proposes
TCB as part of a system that is responsible for enforcing information security policies.
Reference monitor-based approach is proposed in [4], where a system’s TCB not only
includes reference monitor components, but also encompasses all other functionalities
that directly or indirectly affect the correct operation of the reference monitor such as
object managers and policy database. Considering an operating system, its TCB in-
cludes kernel, system utilities and daemons as well as all kinds of object management
and access control functions. Typical object management functions are responsible for
creating objects and processing requests while typical access control functions consist
of both rules and security attributes that support decision-making for access control.

2.2 Integrity Model

To describe information flow-based integrity protection, various models are proposed
and developed in past years, such as Biba [7], Clark-Wilson [15], LOMAC [19] and
CW-lite [17]. Biba integrity property is fulfilled if a high integrity process cannot read
lower integrity data, execute lower integrity programs, or obtain lower integrity data
in any other manner. LOMAC supports high integrity process’s reading low integrity
data, while downgrading the process’s integrity level to the lowest level that it has ever
read. Clark-Wilson provides a different view of dependencies, which states that through
certain programs so-called transaction procedures (TP), information can flow from low
integrity objects to high integrity objects. Later the concept of TP is evolved into filter
in CW-Lite model. A filter can be a firewall, an authentication process, or a program
interface for downgrading or upgrading the privileges of a process. In CW-lite model,
information can flow from low integrity processes (NON-TCB) to high integrity pro-
cesses (TCB) through filters.

2.3 Policy Analysis

The closest existing work to ours include Jaeger et al. [11] and Shankar et al. [17]. In
these work, they use a tool called Gokyo for checking the integrity of a proposed TCB
for SELinux [18]. Also, they propose to implement their idea in an automatic way.
Gokyo mainly identifies a common TCB in SELinux but a typical system may have
multiple applications and services with variant trust relationships. Still, achieving the
integrity assurance for these applications and services is not addressed in Gokyo.

Several query-based policy analysis tools have been developed. APOL [1] is a tool
developed by Tresys Technology to analyze SELinux policies. SLAT (Security En-
hanced Linux Analysis Tool) [9] defines an information flow model and policies are
analyzed based on this model. PAL (Policy Analysis using Logic Programming) [16]
uses SLAT information flow model to implement a framework for analyzing SELinux
policies. All these tools try to provide a way for querying policies. However, they all
display policies and policy query results in text-based expressions, which are difficult
to understand for policy developers or security administrators. Other policy analysis
methods are also proposed. For example, in [23], they propose to analyze the policies
with information-flow based method. For another example, in [22], they try to analyze

68 W. Xu, X. Zhang, and G.-J. Ahn

the policies with graph-based model. However, non these approaches are applicable in
our scenarios since they are specific to certain access control model, and none of them
are realized with certain tools.

To overcome these issues, we have developed a graph-based methodology for iden-
tifying and expressing interested information flows in SELinux policies [21]. We also
have proposed a policy analysis mechanism using Petri Nets is proposed in [3]. How-
ever, this work does not have the capability of policy query, thus is limited in identifying
system TCB and other domain TCBs.

3 Graph-Based Policy Analysis

To help a policy administrator better understand security policies and perform policy
analysis tasks, we first propose a graph-based policy analysis methodology in this sec-
tion. Graphs leverage highly-developed human visual systems to achieve rapid uptake
of abstract information [10]. In our methodology, we have two parallel building blocks:
basic policy analysis and graph-based policy analysis. The basic policy analysis is com-
posed of security policy definitions, integrity model for identifying policy violations,
and methods for resolving policy violations. Graph-based analysis is built according to
basic policy analysis and expresses corresponding components with graphical mecha-
nisms and algorithms. We elaborate the details of our methodology in the remainder of
this section.

3.1 Basic Policy Analysis

Security Policies. A security policy is composed of a set of subjects, a set of objects,
and a set of policy statements or rules which states that a subject can perform what kind
of actions on an object. For information flow purpose, all operations between subjects
and objects can be classified as write like or read like [9] and operations between
subjects can be expressed as calls. Depending on the types of operations, information
flow relationships can be identified. If subject x can write to object y, then there is infor-
mation flow from x to y, which is denoted as write(x, y). On the other hand, if subject
x can read object y, then there is information flow from y to x denoted as read(y, x).
Another situation is that if subject x can call another subject y, then there is informa-
tion flow from y to x, which is denoted as call(y, x). Moreover, the information flow
relationships between subjects and objects can be further described through flow tran-
sitions. In a policy, if a subject s1 can write to an object o which can be read by another
subject s2, then it implies that there is an information flow transition from subject s1

to s2, denoted as flowtrans(s1, s2). Also, if subject s2 can call a subject s1, there is
a flow transition from s1 to s2. A sequence of flow transitions between two subjects
represents an information flow path.

Integrity Model. Retrospecting the integrity models introduced in Section 2, one-way
information flow with Biba would not be sufficient for many cases as communication
and collaboration between application or service domains are frequently required in
most systems. Although filters between high and low integrity data are sufficient enough
for TCB and NON-TCB isolations, it is not suitable for application or service domain

Towards System Integrity Protection with Graph-Based Policy Analysis 69

isolations. For example, processes of user applications and staff applications are re-
quired to be isolated since both are beyond the minimum and common TCB boundary.
With that reason, we develop a domain-based integrity model, in which a concept called
domain TCB is defined to describe subjects and objects required to be isolated for an
information domain. To be clear, the minimum and common TCB of a system is called
system TCB in our paper. Also, for a subject in a system, if it neither belongs to the
system TCB, nor belongs to the domain TCB of a particular application or service, then
it is in the NON-TCB of the system.

Information Domain. As mentioned in Section 1, an application or service information
domain consists of a set of subjects and objects. Here, we propose two steps to identify
an information domain.

– Step1: Keyword-based domain identification. Generally, subjects and objects in a
security policy are described based on their functions, e.g., http is always the prefix
for describing web server subjects and objects in SELinux. Hence, to identify the
web server domain, we use keyword http to identify the initial set of subjects and
objects in this domain.

– Step2: Flow-based domain identification. In a security policy, some subjects or
objects cannot be identified through keyword prefix. However, they can flow to
initially identified domain subjects and objects, influencing the integrity of this do-
main. Therefore, we also need to include these subjects and objects into the domain.
For instance, in a Linux system, var files can be read by web server subjects such
as httpd. Hence they should be included in the web server domain.

Domain TCB. To protect the integrity of an information domain, a domain TCB is
defined. TCB(d) (domain d’s TCB) is composed of a set of subjects and objects in
domain d which have the same level of security sensitivity. In other words, a web server
domain running in a system consists of many subjects–such as processes, plugins, and
tools, and other objects including data files, configuration files, and logs. We consider
all of these subjects and objects as TCB of this domain, while its network object such
as tcp : 80 (http port t) is not considered as TCB since it may accept low integrity
data from low integrity subjects. In a system, the integrity of an object is determined by
the integrity of subjects that have operations on this object. Hence, we need to identify
TCB(d) subjects of each information domain and verify the assurance of their integrity.

To ease this task, a minimum TCB(d) is preferred. However, in the situation that the
minimum TCB(d) subjects have dependency relationships with other subjects, these
other subjects should be added to domain TCB or dependencies should be removed.
Based on these principles, we first identify an initial TCB(d) subjects which are pre-
dominant subjects for domain d. We further discover TCB(d) considering subject depen-
dency relationships with the initial TCB(d) through flow transition-based identification
and violation-based adjustment.

– Step1: Initial TCB(d) identification. In an information domain, there always exist
one or several predominant subjects, which launch all or most of other subjects
functioning in this domain. Here, we identify the initial TCB(d) subjects based on

70 W. Xu, X. Zhang, and G.-J. Ahn

these subject launching relationships and the number of subjects that a subject can
launch. For example, for web server domain, httpd launches all other processes like
httpd script, hence it belongs to the initial TCB(d) of this domain.

– Step2: Flow transition-based TCB(d) identification. The subjects that can flow
only to and from the initial identified TCB(d) are included into domain TCB. For in-
stance, if subject httpd php can flow only to and from httpd, then httpd php should
be included into TCB(d).

– Step3: TCB(d) adjustment by resolving policy violations. After identifying policy
violations (or integrity violations described shortly in this subsection), we adjust the
identified TCB(d) with wrongly included or excluded subjects. For example, ini-
tially subject awstats script (web server statistics script) is excluded from TCB(d).
After identifying policy violations caused from awstats script to web server
TCB(d), we found that these violations can be ignored. Hence, the TCB(d) should
be adjusted to include awstats script.

Domain-based Integrity Model. Based on the concept of system TCB and TCB(d), a
domain-based integrity model is defined as follows.

Definition 1. Domain-based integrity model is satisfied for an information domain d if
for any information flow to TCB(d), the information flow path is within TCB(d); or the
information flow path is from the system TCB to TCB(d); or the information flow path
is from another domain TCB and it is filtered.

Through this definition, domain-based integrity model achieves the integrity of an in-
formation domain by isolating information flow to TCB(d). This model requires that
any information flow happening in a domain d adheres within the TCB(d), from system
TCB to the TCB(d), or from another domain TCB via filter(s). In this paper we do not
discuss the integrity of filters, which can be ensured with other mechanisms such as for-
mal verification or integrity measurement and attestation [14]. Filters can be processes
or interfaces that normally is a distinct input information channel and is created by, e.g.,
a particular open(), accept() or other call that enables data input. For example, linux su
process allows a low integrity process (e.g., staff) changes to be high integrity process
(e.g., root) through calling passwd process. For another example, high integrity process
(e.g., httpd administration) can accept low integrity information (e.g, network data)
through the secure channel such as sshd. Normally, it is the developer’s tasks to build
filtering interfaces and prove effectiveness to the community [13]. Generally, without
viewing system application codes, an easier way for policy administrator to identify
filters is to declare filters with clear annotations during policy development [17]. Here,
we assume that filters can be identified through annotations. Also, in our work, initially
we do not have a set of predefined filters. After detecting a possible policy violation, we
identify or introduce a filter subject to resolve policy violations.

Policy Violation Detection. Based on domain-based integrity model, we treat a TCB(d)
as an isolated information domain. We propose the following rules for articulating pos-
sible policy violations for system TCB and TCB(d) protections.

Rule 1. If there is information flow to a system TCB from its subjects without passing
any filter, there is a policy violation for protecting the system TCB.

Towards System Integrity Protection with Graph-Based Policy Analysis 71

Rule 2. If there is information flow from TCB(dx) to TCB(dy) without passing any filter,
there is a policy violation in protecting TCB(dy).

Policy Violation Resolution. After possible policy violations are identified with vi-
olation detection rules, we take systematic strategies to resolve them. Basically, for a
violation, we first evaluate if it can be resolved by adding or removing related subjects
to/from system or domain TCBs. This causes no change to the policy. Secondly, we try
to identify if there is a filter along with the information flow path that causes the viola-
tion. If a filter can be identified, then the violation is a false alarm and there is no change
to the policy graph. Thirdly, we attempt to modify policy, either by excluding subjects
or objects from the violated information flow path, or by replacing subjects or objects
with more restricted privileges. In addition, we can also introduce a filter subject that
acts as a gateway between unauthorized subjects and protected subjects.

3.2 Graph-Based Analysis

Semantic substrates [5] is a visualization methodology for laying out a graph, in which
graph nodes are displayed in non-overlapping regions based on node attributes. Through
this way, the location of a node conveys its information. Also, the visibility of graphic
links used to describe node relationships is available depending on user control. In our
work, we use semantic substrates to display policy graph and policy violation graph
which are defined based on the previously stated security policies and policy violations.
A graphical query-based violation identification method is introduced based on domain-
based integrity model. Also, we illustrate how we can apply policy violation resolution
methods to policy violation graphs.

Policy Graph. A security policy consists of a set of subjects, objects, and operations
including write, read and call. We define a policy graph as follows:

Definition 2. A Policy Graph of a system is a directed graph G=(V, E), where the set
of vertices V represents all subjects and objects in the system, and the set of edges E=V
× V represents all information flow relations between subjects and objects. That is,

– V=Vo

⋃
Vs, where Vo and Vs are the sets of nodes that represent objects and

subjects, respectively;
– E=Er

⋃
Ew

⋃
Ec. Given the vertices vs1,vs2 ∈ Vs separately representing subject

s1 and s2, and vertices vo ∈ Vo representing object o, (vs1, vo) ∈ Ew if and only if
write(s1, o), (vo, vs2) ∈ Er if and only if read(o, s2), and (vs1, vs2) ∈ Ec if and
only if call(s1, s2).

As concluded in [8], humans perceive data coded in spatial dimensions far more easily
than those coded in non-spatial ones. Based on this concept, we use semantic substrates
to display policies. We divide a canvas into different areas based on the classification of
entities (subjects and objects) and then layout nodes expressing the entities into corre-
sponding areas. We also use non-spacial cues (e.g., color or shape) to emphasize certain
nodes or a group of nodes. Figure 1 (a) shows the semantic substrates-based graph de-
sign. The Y-axis is divided into regions, where each region contains nodes representing

72 W. Xu, X. Zhang, and G.-J. Ahn

entities such as subjects and objects. Furthermore, in each region, nodes representing
entities of different classifications are placed in different spaces along with the X-axis.
For subjects and objects in a policy, Sc1...Scn and Oc1...Ocm separately represent cer-
tain classifications. Different colors and shapes are used to distinguish the identification
of different nodes. Circles and rectangles are used to represent subjects and objects,
respectively. Relationships between subjects and objects are expressed with lines in dif-
ferent colors or shapes. For instance, the write operation between subject s2 and object
o2 is expressed with a red link.

Algorithm 1: [Building Policy Graph]
Input: The Policy file Policy, the Policy Explanation File Fe , the Permission
Mapping File Fp , the Subject Classification File Fs, the Object Classification File Fo.

Output: A Semantic-based Policy Graph G
Method:
(1) Policy_t: = policyParsing(Policy,Fe, Fp, Fs, Fo);/* parsing the policies files into
subjects, objects and relationships , and mapping the classification into the parsed
policies.
(2) G = drawCanvas (Policy_t); /* constructing the canvas for drawing the graphs
and also dividing the graphs into different areas.
(3) G = drawNodes (G , Policy_t); /* reading the entities for the policies and drawing
them in nodes into the classified areas based on the Policy_t structure.
(4) G = drawLines (Policy_t, G , n); /* drawing the link from the node to the other
nodes and setting the attribute for the link.

(b) Algorithm for building policy graph

(a) Design 1- Policy Graph: Links between S2 and
O2 represents write operation; between S3 and O2

expresses read operation; between S4 and S3

denotes call operation

S

O

Sc1 Sc2 Sc3

Oc1 Oc2 Ocm

s1

s3

o1

Scn

s4

s5

o2o3

s2

Fig. 1. Designation and algorithm for expressing policies in graph

Different security policies have different formats and components. To give a uniform
way for policy analysis, we need to preprocess a primitive policy. Figure 1 (b) summa-
rizes the procedures of policy graph representation. First, a policy file Policy is parsed
and mapped through a policy explanation file Fe and a permission mapping file Fp. Fe

includes meta information such as the format of the policy and subject/object attributes
in the policy. The policy format can be binary or text and is organized in certain or-
der. The subjects are users or processes and objects are system resources such as files,
data, port or labels specifying these resources. Fp states operations between subjects
and objects that are mapped to write(), read(), or call(). For instance, if a subject has an
operation to get the attribute of an object, the operation is mapped to read(). In addition,
Fs and Fo files separately define subject and object classifications in the system. After
parsing the policy, a canvas is drawn and divided into different areas, on which nodes
representing policy entities are drawn and relationships between them are expressed
with arrows. Also, during the execution of this algorithm, policy rules are stored as
attributes for corresponding graph nodes and arrows.

Violation Identification with Graphical Queries. According to our domain-based
integrity model, we need to investigate information domain, domain TCB, and then
identify policy violations. To complete these tasks, we design a graphical user inter-
face to create and run queries against a policy graph, and then get required information
such as which subject should be included in the information domain. A query formula-
tion is built with four basic components–Subject, Object, Direct flow and Indirect flow.
Figure 2 summarizes these visual components and details are elaborated as follows.

– Subject is shaped as a labelled circle node to indicate policy subject(s) in a query.
A user can define the Subject node as a single subject or a set of subjects based

Towards System Integrity Protection with Graph-Based Policy Analysis 73

subject object direct flow indirect flow

Fig. 2. Policy query building blocks

on different query requirements. The label under the Subject node specifies user
defined subject names. For instance, a user can query to find a policy subject httpd,
a set of policy subjects httpd, php, and ssh, or any sequence of policy subjects “*”
from a policy graph. Color filled in the Subject node represents user defined policy
subject attribute for a query. An example of the attribute can be the name of an
information domain which is expressed in green color. Therefore, a user can create
an example query with green color in the Subject node which is labelled with httpd.
The meaning of this query is to find a subject which belongs to the information
domain and has name httpd. After the subject is found, it is changed to an expected
color (e.g., red), which is defined by the user through specifying the Subject node
line color. Also, if the query purpose is to identify policy subject(s), then wildcard
“?” should be marked on the Subject node.

– Object is represented as a labelled rectangle node to denote policy object(s) in a
query. Similarly, the label under the Object node illustrates a single policy object
(e.g., etc) or a set of policy object (e.g.,etc or bin). Also, a user can specify policy
object attribute (e.g., domain name) for a query and the color of identified policy
object in the result graph through coloring the Object node rectangle and rectangle
line, respectively. In the situation that the query purpose is to identify objects, “?”
is specified on the Object node.

– Direct flow is drawn with a link to connect Subject node and Object node and pro-
vides a way for direct information flow-based query. The label of a link represents
the intended information flow. For example, a user can query to find if a write
operation exists between a policy subject and a policy object. To specify that the
intended query is to identify a direct flow, a user can denote the Direct flow link
with “?”.

– Indirect flow is expressed in a curved link to connect Subject node and Object node.
The main purpose of indirect flow is to specify the intended information flow paths
between subjects and objects. A user can find the shortest path, all paths, or any
path. The wildcard “*” denotes all paths that can be found between subjects and
objects. If the intended query is to identify indirect flow paths, “?” should be drawn
on the Indirect flow link.

Information Domain Queries. Corresponding to two steps of information domain iden-
tification presented in Section 3.1, we propose two principles as follows.

– Name-based policy subjects or objects query To identify domain subjects and ob-
jects based on keyword, we construct subject and object queries by using their
names. Figure 3 (a) shows an example query: Identifying the subjects or objects
whose names have prefix “prefix”, and painting result nodes with green color. The
query result is shown in Figure 3 (a’), where subjects S1, S3 and object O1 are
identified to be included in the information domain.

74 W. Xu, X. Zhang, and G.-J. Ahn

Fig. 3. Policy query examples

– Direct flow-based subjects or objects query To investigate domain subjects and
objects based on direct flows, we construct an example query shown in Figure 3
(b). The meaning of this query is: Finding the subjects or objects that can directly
flow to the initial identified domain subjects and objects (green colored), and paint-
ing result nodes with green color. The query result in Figure 3 (b’) indicates that
subjects S2, S4 and object O2 should be added into the information domain.

Domain TCB Queries. For domain TCB identification steps described in Section 3.1,
we query TCB(d) for an information domain with following principles. After TCB(d)
queries are completed, TCB(d) subject information is saved into a file Ftcb.

– Transition-based subjects query To query a TCB(d), we first identify TCB(d)
based on subject launching relationships. The example query in Figure 3 (c) states:
Identifying and displaying the direct call flow links between domain subjects. Ex-
ample result is shown in Figure 3 (c’), which displays the call transition relation-
ships between subjects S1, S2 and S3. Hence, subject S3 belongs to TCB(d).

– Indirect flow-based subjects query To identify the subjects that can flow only to
initial TCB(d) as shown in Figure 3 (d), a query is constructed as follows: Identi-
fying the subjects that belong to the information domain (green colored) can flow
only to the initial TCB(d) (red colored) with red color in result nodes. Figure 3 (d’)
indicates the example result that S4 should be added into TCB(d).

Policy Violation Queries. Before introducing our methodology for policy violation
queries, we first define a violation policy graph based on our proposed integrity model.

Towards System Integrity Protection with Graph-Based Policy Analysis 75

Fig. 4. Policy violation and modification example graphs

Definition 3. Given a policy graph G = (V, E), the subject vertices belonging to NON-
TCB, system TCB, and TCB(d) are represented by VNTCB , VTCB , and VTCBd, respec-
tively. A violation policy graph Gv = (V v, Ev) for domain d is a subgraph of G where

– V v = {v : v ∈ VNTCB, ∃u : u ∈ VTCB ∪ VTCBd ∧ (v, u) ∈ E}
– Ev = {(u, v) : u, v ∈ V v ∧ (u, v) ∈ E}

Figure 3 (e’) shows a violation path with a flow transition from a low integrity subject
(black) to a high integrity subject (red). To generate the policy violation graph, a query
is constructed as shown in Figure 3 (e), where we draw in the Subject node with black
color (NON-TCB) and red color (TCB), trying to identify the policy violations from
NON-TCB to TCB caused by indirect information flow. Figure 3 (e”) shows the details
of policy violation graph generation based on query. Through the query operations per-
formed earlier, NON-TCB, TCB and TCB(d) are elaborated in a file Ftcb. Also, NON-
TCB, TCB and TCB(d) subject nodes are separately colored. Then we discover all flow
transitions from NON-TCB subjects to system TCB subjects or TCB(d) subjects. Note
that it is optional for a policy administrator to specify queries from NON-TCB to TCBs
through specifying the exact subject names rather than using “*”.

Policy Violation Resolutions in Graph. With a generated policy violation graph, we
introduce different approaches to modify the policy graph and remove policy viola-
tions and illustrate the expected graph result after the modification. Based on the policy
violation resolution strategies discussed in Section 3.1, other than ignoring a policy vi-
olation through adding related subjects to system or domain TCBs, we can remove the
violation by importing a filter subject. Comparing Figure 4 (a) with violation resolved
graph in Figure 4 (b), write and read operations by the NON-TCB and TCB are re-
moved, transition relationships between subjects and the filter are added, and the policy
violations caused by NON-TCB subjects S1 and S2 are resolved. Another optional way
for resolving policy violations is to import new subjects or objects to restrict original
subjects or objects privileges. As shown in Figure 4 (c), new object O2 is introduced so
the information flows between NON-TCB and TCB are removed. Also, we can resolve
the policy violations through deleting related policy statements. Example result of the
modification is shown in Figure 4 (d), where the read operation between object O1 and
TCB subject S3 is removed to resolve policy violations between NON-TCB and TCB.

76 W. Xu, X. Zhang, and G.-J. Ahn

4 Graph-Based Policy Analysis

Our previous policy visualization tool [21] has shown the feasibility and benefits to vi-
sualize security policies with semantic substrates [5]. Extended from this, a more com-
prehensive policy analysis tool (GPA) is developed in our work, which implements the
query functionality for achieving high system assurance with information flow control.
In this section we use an example SELinux reference policy to show the flexibility and
efficiency of policy analysis with our tool. We use JDK1.6 and other necessary Java li-
braries to develop the main analysis components. We implemented graph drawing with
graph package Piccolo [6].

Applying the reference monitor-based TCB identification method to SELinux, sub-
jects functioning as reference monitor such as checking policy and loading policy be-
long to system TCB. Also, processes used to support reference monitor such as kernel
and init, are included into system TCB. After reference monitor-based system TCB
identification is completed, other subject types such as restorecon are required to be
included into system TCB based on their flow transition relationship with the initial
system TCB. Table 1 shows the TCB domains that we have recognized.

As an example, we use Apache web server as a target service domain to achieve high
integrity. We first identify subjects and objects belonging to Apache domain. We then
specify Apache TCB(d), list the policy violations identified against our integrity model,
and resolve them with different principles.

Apache Domain Identification. To identify subjects and objects for Apache domain,
we first apply keyword-based identification principle. As discussed earlier, we use http
as a keyword prefix. As a result, subjects and objects such as httpd t, httpd php t
are included into Apache domain. With the flow-based identification principle, we dis-
cover all subjects and objects that have a direct flow to the initially identified Apache
subjects and objects and include them into Apache domain. Table 1 shows a selected
list of subjects and objects that we detected. Also, we use graph-based query functions
implemented in GPA to automatically identify Apache information domain. Figures 5.I
(a) and 5.I (b) show how we use graph queries to identify subjects and objects corre-
sponding to Apache domain identification steps.

Apache TCB(d) Identification. Based on the initial TCB(d) identification principle
in Section 3, we get initial TCB(d) subjects from Apache information domain. Specifi-
cally, our analysis shows that all subject domains in Apache related policy rules include
a set of domain relationships since a domain httpd t can transit to other httpd do-
mains such as httpd php t and so on. Thus, a subject labelled by httpd t is a pre-
dominant subject which launches other subjects in Apache server. Similarly, a subject
labelled as httpd suexec t is also a predominant subject since this domain can tran-
sit to most of other httpd domains. Naturally, httpd t and httpd suexec t are
included into Apache TCB(d). Secondly, we construct a query to find all subjects that
can transit only to the initially identified TCB(d) (shown in Figure 5.I (d)). Based on the
generated query results, httpd sysadm script t, httpd rotatelogs t and
httpd php t can transit only to httpd t and httpd suexec t other than system
TCB subjects.

Towards System Integrity Protection with Graph-Based Policy Analysis 77

Violations and Resolutions for Apache. Based on the example query drawn in
Figure 5.I (e), we automatically identify possible policy violations from NON-TCB
subjects to TCB(d) subjects in Apache service. Figure 5(II) shows the identified policy
violations, which implies that TCB(d) integrity is violated because NON-TCB subjects
have write like operations on objects that can be read by TCB(d) subjects. Due to pos-
sible high number of violations, our GPA tool can selectively show certain violations,
allowing a policy administrator to solve them based on the priority.

Adjust TCB(d). After policy violations are identified, Apache TCB(d) is required to
be adjusted and policy violations should be removed. As shown in Table 2, httpd
awstat s script t can flow to TCB(d) subjects through httpd awstats
script rw t. At the same time, it is flown in by many NON-TCB subjects through
some common types such as devtty t. Hence, we ignore the violations caused by
this awstats script and include it into TCB(d). Similar situation occurs for
httpd apcupsd cgi script t and httpd prewikka script t. However,

Table 1. Apache information domain

System TCB
kernel t load policy t initrc t bootloader t quota t
mount t ipsec mgmt t useradd t automount t passwd t
hwclock t admin passwd exec t cardmgr t checkpolicy t fsadm t
kudzu t sshd login t restorecon t newrole t klogd t
syslogd t sysadm t getty t apt t sshd t
dpkg t logrotate t snmpd t ldconfig t init t
lvm t local login t setfiles t

Identified Key word-based Apache Subjects and Objects
Apache Subjects

httpd staff script t httpd awstats script t httpd t httpd rotatelogs t httpd helper t
httpd unconfined script t httpd php t httpd sysadm script t httpd sys script t httpd suexec t
httpd prewikka script t httpd apcupsd cgi script t httpd user script t

Apache Objects
httpd staff script ra t httpd unconfined script ro t httpd cache t httpd user script rw t
httpd user script exec t httpd prewikka script ro t httpd exec t httpd apcupsd cgi script ra t
httpd user htaccess t httpd apcupsd cgi htaccess t httpd lock t http port t
httpd sys script rw t httpd apcupsd cgi script rw t httpd tmpfs t httpd awstats script ra t
httpd helper exec t http cache client packet t httpd log t httpd awstats script ro t
httpd awstats htaccess t httpd awstats script exec t httpd user content t http cache port t
httpd awstats script rw t httpd apcupsd cgi script exec t httpd staff htaccess t httpd sysadm script rw t
httpd sys script ra t httpd prewikka script exec t httpd suexec exec t httpd sysadm script ro t
httpd user script ro t httpd unconfined script ra t httpd php tmp t httpd php exec t
httpd prewikka content t httpd prewikka htaccess t httpd staff content t httpd staff script ro t
httpd rotatelogs exec t httpd prewikka script ra t httpd squirrelmail t httpd unconfined script rw t
http server packet t httpd prewikka script rw t httpd sys htaccess t httpd modules t
httpd staff script rw t httpd sysadm script exec t httpd tmp t httpd sys script ro t
httpd sysadm htaccess t httpd staff script exec t httpd sys content t httpd apcupsd cgi script ro t
httpd sys script exec t httpd unconfined script exec t httpd config t httpd suexec tmp t
httpd sysadm content t httpd unconfined content t http client packet t httpd unconfined htaccess t
httpd sysadm script ra t httpd apcupsd cgi content t httpd var lib t httpd user script exec t
httpd awstats content t http cache server packet t httpd var run t

Identified Flow-based Apache Subjects and Objects
Apache Subjects

applications staff application sysadm application services user application
Apache Objects

* node t (10 types) * port t (116 types) * fs t (38types) * home dir t (4 types) others
Identified Apache TCB(d)

httpd suexec t httpd awstats script t httpd t httpd helper t httpd php t
httpd sysadm script t httpd prewikka script t httpd rotatelogs t httpd apcupsd cgi script t

78 W. Xu, X. Zhang, and G.-J. Ahn

Fig. 5. Policy violations and solving

Table 2. Policy violations of Apache domain

Policy Violations
NON-TCB Type:Class TCB(d) Subject Solve
270 * node t: node TCB(d) subjects Filter
270 * port t: tcp socket TCB(d) subjects Filter
270 netif t: netif TCB(d) subjects Filter
6 subjects dns client packet t :packet TCB(d) subjects Filter
6 subjects dns port t:packet TCB(d) subjects Filter
25 sysadm devpts t:chr file httpd t Modify
104 initrc devpts t: chr file httpd t,httpd rotatelogs t Modify
16 console device t: chr file httpd t,httpd suexec t Modify
270 devlog t :sock file httpd t,httpd suexec t Modify
270 device t:chr file TCB(d) subjects Modify
270 devtty t:chr file TCB(d) subjects Modify
3 sysadm tty device t:chr file httpd t Modify
5 urandom device t:chr file httpd t Modify
270 zero device t:chr file TCB(d) subjects Modify
134 initrc t:fifo file TCB(d) subjects Modify
5 var run t:dir httpd t Modify
72 var log t: dir httpd t Modify
72 tmpfs t:dir httpd t Modify
httpd staff script t httpd staff script * t:file httpd t Modify
httpd user script t httpd user script * t:file httpd t Modify
httpd sys script t httpd sys script * t:file httpd t Modify
httpd unconfined script t httpd unconfined script * t:file httpd t Modify
webalizer t httpd sys content t:file httpd t Modify
httpd apcupsd cgi script t httpd apcupsd cgi script * t:file httpd t Ignore
httpd awstats script t httpd awstats script * t:file httpd t Ignore
httpd prewikka script t httpd prewikka script * t:file httpd t Ignore

Further Policy Violations Example
NON-TCB Type:Class Adjusting Subject Solve
270 devtty t:chr file httpd prewikka script t Modify
270 devtty t:chr file httpd awstats script t Modify
270 devtty t:chr file httpd apcupsd cgi script t Modify

httpd staff script t cannot be included into TCB(d) since it would lead un-
limited file access for the staff services such as staff t, staff mozilla t, and
staff mplayer t.

Remove Policy Rules. Another way for resolving policy violations is to remove the re-
lated policy statements. For example, webalizer t is to label a tool for analyzing
the log files of web server and is not necessary to modify web server information. To

Towards System Integrity Protection with Graph-Based Policy Analysis 79

resolve the policy violations caused due to the write access to httpd sys content t
by webalizer t, we remove the policy rule stating write like operation between
webalizer t and httpd sys content t.

Modify Policy Rules. Many policy violations are caused because related subjects or
objects are given too much privileges. Hence, rather than just removing related pol-
icy statements, we also need to replace these subjects or objects with more restricted
rights. For example, for policy violations caused by read and write accesses to initrc
devpts t, our solution is to redefine initrc devpts t by introducing initrc
devpts t, system initrc devpts t, and * daemon initrc devpts t
(* representing the corresponding service name). Corresponding policy rules are also
modified as follows:

allow httpd t initrc devpts t:chr file {ioctl read getattr lock
write append}; is changed to
allow httpd t httpd daemon initrc devpts t:chr file {ioctl read
getattr lock write append};

Add Filter. Based on the domain-based integrity model, a filter can be introduced into
policies to remove policy violations. For example, to remove the violations caused by
http port t, we introduce a network filter subject as follows:

allow user xserver t networkfilter t:process transition;
allow networkfilter t http port t:tcp socket {recv msg send msg};

After the modification is applied, the original policy violations are eliminated. In gen-
eral, to validate the result of a policy modification, we recheck the relationships between
the policy violation related domains and types. Comparing Figure 5 (c) with Figure 5
(b), we can observe that all read operations between TCB(d) and type http port t
are removed. Also, the write operations between NON-TCB and http port t are
also removed. Instead, a new domain networkfilter t is added, which has write
and read operations on http port t. Also, all TCB(d) and NON-TCB subjects can
transit to this new domain type.

5 Conclusion

In this paper, we have proposed a graph-based policy analysis framework to effectively
verify complex security policies for integrity protection, based on a proposed domain-
based integrity model. We develop an intuitive visualization tool to demonstrate the
feasibility of our framework. Additionally, we discuss how we can use our framework
to analyze SELinux policies and the results demonstrate the effectiveness and efficiency
of our methodology. We believe that this is the first effort to formulate a general policy
analysis framework with graph-based approach. We are going to develop a violation
graph based ranking schema, which can be used to help resolving the policy violations.
Also, the userability of the graph-based policy analysis tool will be studied. In addi-
tion, we plan to enhance the flexibility of our approach and investigate how our policy
analysis framework and tool can be utilized with other integrity models.

80 W. Xu, X. Zhang, and G.-J. Ahn

References

1. Tresys Technology Apol., http://www.tresys.com/selinux/
2. Trusted Computer System Evaluation Criteria. United States Government Department of De-

fense (DOD), Profile Books (1985)
3. Ahn, G., Xu, W., Zhang, X.: Systematic policy analysis for high-assurance services in

selinux. In: Proc. of IEEE Workshop on Policies for Distributed Systems and Networks
(2008)

4. Anderson, A.P.: Computer security technology planning study. Technical Report ESD-TR-
73-51, II (1972)

5. Aris, A.: Network visualization by semantic substrates. IEEE Transactions on Visualization
and Computer Graphics 12(5), 733–740 (2006); Senior Member-Ben Shneiderman

6. H. C. I. L. at University of Maryland. Piccolo, http://www.cs.umd.edu/hcil/
jazz/download/index.shtml

7. Biba, K.J.: Integrity consideration for secure compuer system. Technical report, Mitre Corp.
Report TR-3153, Bedford, Mass (1977)

8. Green, M.: Toward a perceptual science of multidimensional data visualization: Bertin and
beyond (1998), http://www.ergogero.com/dataviz/dviz2.html

9. Guttman, J., Herzog, A., Ramsdell, J.: Information flow in operating systems: Eager formal
methods. In: Workshop on Issues in the Theory of Security (WITS) (2003)

10. Herman, I., Melancon, G., Marshall, M.: Graph visualization and navigation in information
visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1),
24–43 (2000)

11. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in the selinux example policy.
In: Proc. of USENIX Security Symposium (2003)

12. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the linux
operating system. In: USENIX Annual Technical Conference, FREENIX Track (2001)

13. Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: 12th USENIX
Security Symposium, August 2003, p. 11 (2003)

14. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a TCG-based
integrity measurement architecture. In: USENIX Security Symposium (2004)

15. Sandhu, R.S.: Lattice-based access control models. IEEE Computer 26(11), 9–19 (1993)
16. Sarna-Starosta, B., Stoller, S.D.: Policy analysis for security-enhanced linux. In: Proceedings

of the 2004 Workshop on Issues in the Theory of Security (2004)
17. Shankar, U., Jaeger, T., Sailer, R.: Toward automated information-flow integrity verification

for security-critical applications. In: NDSS. The Internet Society (2006)
18. Smalley, S.: Configuring the selinux policy (2003), http://www.nsa.gov/SELinux/

docs.html
19. Fraser, T.: Lomac: Low water-mark integrity protection for cots environment. In: Proceedings

of the IEEE Symposium on Security and Privacy (May 2000)
20. WIKIPEDIA. Trusted computing base, http://en.wikipedia.org/wiki/

Tusted_Computing_Base
21. Xu, W., Shehab, M., Ahn, G.: Visualization based policy analysis: case study in selinux. In:

Proc. of ACM Symposium of Access Control Models and Technologies (2008)
22. Wang, H., Osborn, S.: Discretionary access control with the administrative role graph model.

In: Proc. of ACM Symposium of Access Control Models and Technologies (2007)
23. Osborn, S.: Information flow analysis of an RBAC system. In: Proc. of ACM Symposium of

Access Control Models and Technologies (2002)

http://www.tresys.com/selinux/
http://www.cs.umd.edu/hcil/jazz/download/index.shtml
http://www.cs.umd.edu/hcil/jazz/download/index.shtml
http://www.ergogero.com/dataviz/dviz2.html
http://www.nsa.gov/SELinux/docs.html
http://www.nsa.gov/SELinux/docs.html
http://en.wikipedia.org/wiki/Tusted_Computing_Base
http://en.wikipedia.org/wiki/Tusted_Computing_Base

	Towards System Integrity Protection with Graph-Based Policy Analysis
	Introduction
	Background and Related Work
	Trusted Computing Base
	Integrity Model
	Policy Analysis

	Graph-Based Policy Analysis
	Basic Policy Analysis
	Graph-Based Analysis

	Graph-Based Policy Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

