
UML-Based Representation of Role-Based Access Control t

Michael E. Shin and Gail-Joon Ahn
ISE Department

George Mason University
4400 University Dr.

Fairfax, VA 22030, U.S.A.
{ eshin,gahn) @isse.gmu. edu

Abstract

In role-based access control (RBAC) permissions
are associated with roles, and users are made mem-
bers of appropriate roles thereby acquiring the roles’
permissions. The principal motivation behind R B A C
is to simplify administration. Several frameworks fo r
the development of role-based systems have been in-
troduced. However, there are a few works specifying
R B A C in a way which system developers or software
engineers can easily understand and refer to develop
role-based systems. The Unified Modeling Language
(UML) is a general-purpose visual modeling language
in which we can specify, visualize, and document the
components of a software system. I n this paper we rep-
resent the R B A C model with this well-known modeling
language to reduce a gap between security models and
system developments. W e specify the R B A C model
with three views: static view, functional view, and dy-
namic view. In addition, we briefly discuss about the
future directions.

1. Introduction

In RBAC permissions are associated with roles, and
users are made members of appropriate roles thereby
acquiring the roles’ permissions. This greatly simpli-
fies management of permissions. Roles are created for
the various job functions in an organization and users
are assigned to roles based on their responsibilities and
qualifications. Users can be easily reassigned from one
role to another. And the access of users to the infor-

tAll correspondence should be addressed to: Dr. Gail-
Joon Ahn, Information and Software Engineering Department,
Mail Stop 4A4, George Mason University, Fairfax, VA 22030;
email:gahn@isse.gmu.edu; phone:+l-703-993-1668; fax:+ 1-703-
993-1638.

mation is regulated on the basis of the roles which are
assigned to the users.

Since RBAC has become widely accepted as the
proven technology, many security researchers and se-
cure system developers have spent their time to de-
velop role-based systems. Several frameworks for the
development of role-based systems have been intro-
duced [2, 11, 121. These prior works were some-
times hard for system developers to understand be-
cause some are too abstract and formal, and others
are ad-hoc solutions which are focused on application-
oriented or domain-specific frameworks. These frame-
works are not good enough to give a sound blueprint
to system developers.

Our main objective here is to reduce such a gap be-
tween security models and system developments. In
this paper we represent RBAC with a general-purpose
visual modeling language UML. We choose the UML
because it has been a standard language in the mod-
eling community. Our representation includes static,
functional, and dynamic views of RBAC model to
achieve our objective.

This paper is organized as follows. In section 2 we
describe a well-known model for role-based access con-
trol, commonly known as RBAC96. Section 3 briefly
overviews UML. In section 4 we represent RBAC96
model with UML. Section 5 concludes this paper.

2. RBAC Model

RBAC has recently received considerable attention
as a promising alternative to traditional discretionary
and mandatory access controls (see, for example, [3,
4, 6, 91). As MAC is used in the classical defense
arena, the policy of access is based on the classification
of objects such as top-secret level. The main idea of

0-7695-0798-9/00 $10.00 0 2000 IEEE
195

Figure 1: RBAC Model

DAC is that the owner of an object has discretionary
authority over who else can access that object. But
RBAC policy is based on the roles of the subjects and
can specify security policy in a way that maps to an
organization's structure.

A general family of RBAC models called RBAC96
was defined by Sandhu et a1 [9]. Figure 1 illustrates
the most general model in this family. Motivation and
discussion about various design decisions made in de-
veloping this family of models is given in [9].

Figure 1 shows (regular) roles and permissions that
regulate access to data and resources. Intuitively, a
user is a human being or an autonomous agent, a role
is a job function or a job title within the organization
with some associated semantics regarding the author-
ity and responsibility conferred on a member of the
role, and a permission is an approval of a particular
mode of access to one or more objects in the system
or some privilege to carry out specified actions. Roles
are organized in a partial order 2, so that if x 2 y
then role x inherits the permissions of role y. Mem-
bers of x are also implicitly members of y. In such
cases, we say x is senior to y. Each session relates one
user to possibly many roles. The idea is that a user
establishes a session and activates some subset of roles
that he or she is a member of (directly or indirectly by
means of the role hierarchy). The RBAC model has
the following components and these components are
formalized from the above discussions.

U is a set of users,

R is disjoint sets of roles and administrative roles
respectively,

P is disjoint sets of permissions and administra-
tive permissions,

U A E U x R, is a many-to-many user to role
assignment relation,

P A C P x R is a many-to-many permission to
role assignment relation,

RH R x R is partially ordered role hierarchies
(written as 2 in infix notation),

S is a set of sessions,

u s e r : S + U , is a function mapping each session
s, to the single user useT(s,) and is constant for
the session's lifetime,

ro les : S + 2R is a function mapping each
session si to a set of roles roZes(si) c {T I
(3 ~ ' 2 T) [(u s e T (s i) , T ') E U A] } (which can change
with time) so that session si has the permissions
lJTEroles(si){P I (3T" I r) [(P l T ' O E PA111 and

there is a collection of constraints stipulating
which values of various components of the RBAC
model are allowed or forbidden.

A user can be a member of many roles and a role
can have many users. Similarly, a role can have many
permissions and the same permissions can be assigned
to many roles. Each session relates one user to possi-
bly many roles. Intuitively, a user establishes a session
during which the user activates some subset of roles
that he or she is a member of. The permissions avail-
able to the users are the union of permissions from
all roles activates in that session. Each session is as-
sociated with a single user. This association remains
constant for the life of a session. A user may have
multiple sessions open at the same time, each in a dif-
ferent window on the workstation screen for instance.
Each session may have a different combination of ac-
tive roles. The concept of a session equates to the
traditional notation of a subject in access control. A
subject is a unit of access control, and a user may have
multiple subjects (or sessions) with different permis-
sions active at the same time.

3. Overview of UML

The Unified Modeling Language (UML) is a
general-purpose visual modeling language in which we
can specify, visualize, and document the components

196

Session

Figure 2: Class Diagram: Conceptual Static Model

of a software system. It captures decisions and under-
standing about systems that must be constructed [7].
It has been a standard language in the field of software
engineering.

The UML consists of use case modeling, static mod-
eling, and dynamic modeling. In use case modeling,
the functional requirements of systems are specified
with use cases and actors. A use case is initiated by
actors and it defines interactions between the actors
and the systems. Static modeling provides a struc-
tural view of information in the systems. In such a
view, classes are defined in terms of attributes, as well
as relationships with other classes. The relationships
include association, generalization/specialization, and
aggregation of classes. Dynamic modeling shows a be-
havioral view of the systems. It can be described with
object collaboration diagrams, sequence diagrams, or
statecharts. Object collaboration diagrams and se-
quence diagrams are developed to show how objects
collaborate with each other to execute the use cases.
State dependent views of objects are defined in state-
charts [5].

In this paper, we take class diagrams, use case dia-
grams, and object collaboration diagrams for a static
view, a functional view, and a dynamic view of the
RBAC model, respectively. In the rest of this pa-

per, we use UML notations which were introduced
in [l, 7, lo].

4. UML-Based RBAC Presentation

Major components in RBAC are users, roles, per-
missions, sessions, and constraints. In order to repre-
sent RBAC model using UML, we analyze each com-
ponent with a notion of object class. In the subse-
quent sections, our analysis is specified by three dif-
ferent views such as a static view, a functional view,
and a dynamic view.

4.1. Static View

The conceptual static model for RBAC is depicted
in Figure 2. It contains classes, relationships between
classes, and cardinalities in relationships. The basic
entities are user, role, permission, constraint, and ses-
sion classes. The role and permission classes, respec-
tively, may be specialized to two categories: user and
administrative. This specialization depends on the
level of users' qualification. The constraints in the
RBAC model can have various forms, which are de-
pendent on application systems. In order to simplify

197

roleList

Figure 3: Attributes of Entity Classes

the analysis model, the constraint in our static model
has only three constraints such as user constraint, per-
mission constraint, and session constraint. Also, the
static model has a special class called session hour.
This class is used when a user establishes a session to
activate her/his roles. This notion is useful to express
session-based constraint. For example, an organiza-
tion may require that a user can establish her/his ses-
sion only during the certain amount of time. In order
to enforce this kind of constraints, we need to keep
track of session hours for each session. Attributes of
entity classes are defined in Figure 3.

In the static model, UA relation and PA relation are
represented as "Assinged to" relation with a many-to-
many cardinality. User-session relation is viewed as
a user can establish one or more sessions to activate
at least one or more roles per each session with the
constant session lifetime. The role inheritance relation
is shown as a role inherits the other roles.

4.2. Functional View

In this paper, we also make more concrete func-
tional requirements to represent the functions that
RBAC systems should provide are not clearly defined
in section 2. The functional view is depicted in Fig-
ure 4 using the use case model that has three actors
such as a security administrator, a user, and a role do-
main engineer. The role domain engineer who extracts
the foundational knowledge from application systems
may organize a set of permissions, construct role hier-
archies, and specify constraints. The security admin-
istrator who administrates a role-based system may
assign users to roles and assign permissions to roles.
The user who would be real persons or external sys-
tems may establish sessions, request permission ap-
proval, and close sessions.

The following shows the brief specification of the
session establishing use case:

Figure 4: Use Case Model

Use case: Session Establishing use case
Actors: User
Precondition: System idle
Description: A user presents an informa-
tion for establishing a session. System dis-
plays the roles that a user can activate. A
user selects roles to activate. System acti-
vates a session with the roles that a user se-
lected.

After a user establishes her/his session with selected
roles, a user may need to access the system resources
requiring authorization procedures that should be
based on her/his role information. In other words,
the permissions that are associated with her/his roles
should be approved by the system. The following
shows the brief specification of such a use case, called
permission approval use case:

Use case: Permission Approval use case
Actors: User
Precondition: A session was previously ac-
tivated for a user.
Description: A user presents an informa-
tion for permission approval. System noti-
fies a user whether or not the permission is
approved.

In this paper, the limited functions are inferred
from the RBAC model. We may also consider other
situations because the functions in the RBAC system
can be articulated. For example, we may require ad-
ditional functions for monitoring sessions initiated by
a security administrator or inquiring a user's status
initiated by a user.

198

SI: Session S 2 Roles

Session Roles
N W S2.7 SessiotJS1.1:

Name

S1.6
S 1.2: Reauest

A &r Session
Establishment Input

Activation Input
Role$&SZ.l: Roles

Establishment Activation

2 I uuserinterfacer 1

* c
P1.3: Activated Roles

uentity B

:Session

Figure 5: Collaboration Diagram: Session Establishment

, PI: P;ssion , Userl , ace ,
uuser interface.

nterf

Approval Input

P1.9 Approval

&r
P1.8: JP1.l: Permission
Approval Approval Input

<<entity U

Time

Figure 6: Collaboration Diagram: Permission Approval

199

4.3. Dynamic View

In the dynamic view, the use cases are refined to
show the interactions among the objects that partic-
ipate in each use case. The collaboration diagram
for the session establishment is depicted in Figure 5
where a user initiates the use case through a user in-
terface and RBACController coordinates interactions
between the objects in the use case. The collaboration
diagram for permission approval is illustrated in Fig-
ure 6 where it requires a precondition that a session
has been activated before the execution of permission
approval use case. The complete descriptions of each
diagram are omitted for the simplicity.

5. Conclusion

In this paper, we briefly described a well-known
model for role-based access control. We specified
this model using the visual modeling language UML.
Rather than simply enumerating each component in
RBAC model, we showed UML-based analysis model
using class diagrams, use case diagrams, and object
collaboration diagrams. This is the first attempt for
specializing RBAC model using a modeling language.
We believe that our work can help system develop-
ers t o understand RBAC model more easily and to
build role-based systems. Also we could identify use-
ful functions and constraints which were ruled out at
the beginning of the security model.

Based on this work, we would investigate how the
UML-based model can be accommodated to specify
each component in RBAC model. It may include how
to represent role hierarchies and constraints with some
possible extensions of the UML. Because models help
us understand the system by simplifying some of the
details, this direction will be of practical interests.

Acknowledgements

The authors would like to thank Mr. Jaehong Park
for his assistance on reviewing this paper.

References

[l] G. Booch, J. Rumbaugh, and I. Jacob-
son. The Unified Modeling Language User
Guide. Addison Wesley, 1999.

[2] Pete Epstein and Ravi Sandhu. Towards A
UML Based Approach to Role Engineering.
In Proceedings of the 4th ACM Workshop
on Role-Based Access Control, pages 135-
142, Fairfax, VA, October 28-29 1999.

[3] David Ferraiolo and Richard Kuhn. Role-
based access controls. In Proceedings of
15th NIST-NCSC National Computer Se-
curity Conference, pages 554-563, Balti-
more, MD, October 13-16 1992.

[4] M.-Y. Hu, S.A. Demurjian, and T.C. Ting.
User-role based security in the ADAM
object-oriented design and analyses envi-
ronment. In J . Biskup, M. Morgernstern,
and C. Landwehr, editors, Database Se-
curity VIII: Status and Prospects. North-
Holland, 1995.

[5] Hossan Gomaa. Object Oriented Analysis
and Modeling for Family of systems with
the UML. Technical Report, ISE Dept.
George Mason University, 1999.

[6] Imtiaz Mohammed and David M. Dilts.
Design for dynamic user-role-based secu-
rity. Computers €4 Security, 13(8):661-671,
1994.

[7] J. Rumbaugh, G. Booch, and I. Jacobson.
The Unified Modeling Language Reference
Manual. Addison Wesley, Reading MA,
1999.

[8] Ravi S. Sandhu. Lattice-based access con-
trol models. IEEE Computer, 26(11):9-19,
November 1993.

[9] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-
puter, 29(2):38-47, February 1996.

[lo] National Software et al. Unified Model-
ing Language Notation Guide, Version 1.1.
September 1, 1997.

[ll] Charles Youman, Ed Coyne, and Ravi
Sandhu, editors. Proceedings of the 2nd
ACM Workshop on Role-Based Access
Control, Nov. 6-7. ACM, 1997.

[12] Charles Youman, Ed Coyne, and Ravi
Sandhu, editors. Proceedings of the 3rd
ACM Workshop on Role-Based Access
Control, Oct. 22-23. ACM, 1998.

200

