
Int. J. Inf. Secur. (2013) 12:155–171
DOI 10.1007/s10207-012-0180-7

REGULAR CONTRIBUTION

Visualization-based policy analysis for SELinux:
framework and user study

Wenjuan Xu · Mohamed Shehab · Gail-Joon Ahn

Published online: 8 November 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract In this paper, we propose a visualization-based
policy analysis framework that enables system administrators
to query and visualize security policies and to easily iden-
tify the policy violations, especially focused on SELinux.
Furthermore, we propose a visual query language for
expressing policy queries in a visual form. Our framework
provides an intuitive cognitive sense about the policy, policy
queries and policy violations. We also describe our imple-
mentation of a visualization-based policy analysis tool that
supports the functionalities discussed in our framework. In
addition, we discuss our study on usability of our tool with
evaluation criteria and experimental results.

Keywords Policy analysis · Visualization-based · SELinux

1 Introduction

In computing systems, security policies are specified to meet
security goals such as access to protected resources, infor-
mation flow to and from protected resources, and resource
isolation and separation of duty. Policy administration is a
challenging task due to the complexity and interdependence

W. Xu
Frostburg State University, 101 Braddock Rd.,
Frostburg, MD 21532, USA
e-mail: wxu@frostburg.edu

M. Shehab
UNC Charlotte, 9201 University City Boulevard,
Charlotte, NC 22087, USA
e-mail: mshehab@uncc.edu

G.-J. Ahn (B)
Arizona State University, 660 South Mill Avenue,
Tempe, AZ 85287, USA
e-mail: gahn@asu.edu

of policy rules. This is further exacerbated by large policy
sizes, for example, the Security-Enhanced Linux (SELinux)
policy includes over 30,000 statements [18]. Access control
systems can become significantly ineffective if the imple-
mented policies are not representative of targeted secu-
rity goals. Simple policy misconfigurations might allow an
unprivileged process α to write to some resource that can
be read by a privileged process β, causing information flow
from α to β leading to an integrity violation. System admin-
istrators use policy analysis tools to locate and correct policy
violations. Several policy analysis frameworks have focused
on information flow models [7,11–14,27,28,36] to enable
policy verification and testing. Policy analysis frameworks
assume that the policy administrator is a security expert that
completely understands and interprets all the policy rules.
Furthermore, such policy analyses would help locate policy
violations.The output of policy analysis tools may list pos-
sible violations, which does not necessarily give the system
administrator a clear view on how the violation was orig-
inated and how it might propagate in the systems. Infor-
mation visualization [8] enables users to explore, analyze,
reason, and explain abstract information by taking advantage
of their visual cognition. Several disciplines have adopted
information visualization mechanisms to better understand
and reason about the collected data. For example, visual-
ization techniques have been adopted in bio-informatics,
networks, data mining, information retrieval, social net-
works, and several other areas. In the security arena, visual-
ization has been used to understand and present data related
to network attacks [20,38–40], intrusion detection [5,10,22,
34], firewall policies [16,21,35], and trust negotiations [37].
In this paper, we propose a policy analysis framework that
is based on information visualization principles to simplify
policy analysis and to provide a better understanding to the
policy administrator.

123



156 W. Xu et al.

A policy visualization framework should provide mecha-
nisms to both display and query the policy base. Our frame-
work models the security policy as a policy graph and adopts
both the semantic substrates [2,6] and adjacency matrix
[15,29] mechanisms to generate policy layouts for represent-
ing policy portions. In the semantic substrates mechanism,
the nodes and links expressing policy statements are arranged
based on semantic classifications, which provide a system-
atic approach to trace policy rules. The adjacency matrix
mechanism provides an intuitive approach to trace the read
and write relationships between subjects and objects. Pro-
viding simple and descriptive policy graph layouts enables
the policy administrator to easily examine and understand
the policy. Another novel module in our framework is the
visual query formulation that enables the administrator to
build queries against the policy base by simply dragging
and connecting provided query components. This mecha-
nism follows an approach similar to the query by example
mechanism used for relational databases [24,25]. Using a
graphical query platform enables the average administrator to
easily probe a policy for identifying violations by specifying
graphical queries, without the need to write any script or learn
a new query language. Also, our policy visualization frame-
work is realized as a policy visualization analysis (PVA)
tool and we attempt to visualize and query SELinux poli-
cies. In addition, we conduct a user study with two aspects:
comparison between PVA and an existing tool, and compar-
ison between semantic substrates approach and adjacency
matrix approach. In this study, we examine the usability of
our framework with participants who browse and analyze
security policies with tools and two visualization methods
based on the designed instruction. The results are collected
and analyzed with paired samples t-tests [23] based on the
participants’ feedback.

The rest of the paper is organized as follows. Section 2
provides an overview of SELinux, trusted computing base
and information flow models. In Sect. 3, we introduce our
visualization-based policy analysis framework and policy
visualization approaches. The policy query classification and
query execution are presented in Sect. 4. Our policy visual-
ization tool, PVA is presented in Sect. 5 followed by the
evaluation through user study in Sect. 6. Section 7 describes
the related work. Section 8 concludes the paper along with
the future work.

2 Preliminaries

2.1 SELinux overview

Security-Enhanced Linux [18] implements mandatory access
control (MAC)-based policies. The MAC mechanisms are
implemented through the Type Enforcement model, in which

domains are used to label processes, and types are used to
label files and other resources. The policy rule set specifies
how domains can access different types. For example, a pol-
icy defines a domain passwd_t and assigns it to processes
running a specific set of executables used for a password. The
policy would also allow the passwd_t domain to operate
on resources with a type security_t. The operation is
identified by two pieces of information: a class (e.g., file,
directory, process, and socket) and a permission (e.g., read,
unlink, signal, and sendto). SELinux defines 28 classes and
120 permissions. For the sake of simplicity, SELinux uses
the notion of type to interchangeably describe both domain
and type. In addition to Type Enforcement, SELinux also
provides a role-based access control (RBAC) model [18]. A
user is assigned to a role which is an abstraction designed to
make policy rules more concise. Policy rules are introduced
to state the user to role assignments and the role to permission
assignments. The set of permissions associated with a role is
specified using types. Correspondingly, all the resources in
SELinux are labeled with a set composed of user, role and
domain or type. This kind of set is called security context. For
all object types, SELinux uses a role object_r and a user
system_u to specify their security contexts. A domain type
can be associated with different roles and users for different
security contexts. Figure 1 shows an example SELinux policy
showing the type, domain, and role declarations, a user jdoe
operating in the untrusted domain user_t, the domain type
allow rules, and the security context declarations.

2.1.1 SELinux type characteristics

The SELinux types are classified based on the functions per-
formed by processes and the operations performed on the
different objects [30]. The domain and type classifications
are defined as follows:

– Domain Classification: According to the SELinux
policy configuration from NSA [30], domain types in
SELinux can be classified into system domains, user
program domains, and user login domains. System
domains are composed of domains labeled as system
processes (e.g., kernel_t, initrc_t, and init_t)
or daemons (e.g., sendmail_t and ftpd_t). User
program domains include unprivileged user program
domains (e.g., user_xserver_t), administrator pro-
gram domains (e.g., sysadm_xserver_t), and some
other program domains (e.g., logrotate_t and
passwd_t). User login domains are the domains used
for user authorization such as user_t, sysadm_t, and
staff_t. Due to the large number of vulnerabilities that
have been found in daemons (e.g.,sendmail_t), we
divide system domains into daemons and general system
domains.

123



Visualization-based policy analysis for SELinux 157

(a) (b)

Fig. 1 SELinux example policy and classifications

– Type Classification: Types in SELinux can be classified
into security types (e.g., security_t), device types
(e.g., fixed_disk_device_t and device_t),
file types (e.g., etc_t), procfs types (e.g.,
sysctl_kernel_t and proc_t), devpts types (e.g.,
ptmx_t), nfs types (e.g., nfs_t), and network types
(e.g., icmp_socket_t and port_t). The details
of domain and type classifications are summarized
in Fig. 1.

2.1.2 SELinux policy security goals

Loscocco et al. [19] outlined six critical security goals to
be achieved by SELinux security policies. These goals are
summarized as follows: (G1) Limiting raw access to data,
(G2) Protecting kernel integrity, (G3) Protecting system file
integrity, (G4) Confining privileged process, (G5) Separat-
ing processes, and (G6) Protecting the administrator domain.
Goals G2, G3, and G6 are focused on integrity protection of
resources that include the boot files, proc files, and security
policy-related objects. Goal G1 protects both the integrity
and confidentiality of the system device resources, for exam-
ple, the write operation to the fixed disk devices is restricted
to the fsck labeled programs for checking file system con-
sistency. Goals G4 and G5 target the implementation of the
principle of the least privilege by restricting access to cer-
tain domains [26]. For example, a mail server process should
only access certain resources such as the mail spool file.
These goals are implemented in SELinux policies by limiting
access with the allow/deny rules targeting specific domains
and types. Goal-related rules can be identified by checking

the allow/deny rules and the affected resources. For example,
the policies related to G1, G2, and G3 can be identified by
locating rules affecting raw data, kernel files, and systems
files, respectively. Later, we use the classification of goal-
related policies to analyze the security policies against these
security goals and locate security violations.

2.2 Trusted computing base (TCB)

The early understanding of trust perceived that hardware
and software, which need to be trusted, should be generally
equated to operating systems and the supporting hardware.
Then, the concept of the reference monitor was introduced
in system architectures to validate all access requests by pro-
grams against information security policies [1]. This con-
sequently led to the introduction of the Trusted Computing
Base, which is defined as part of a system that is responsible
for enforcing security policies of the system [33]. The Trusted
Computing Base not only includes the reference validation
mechanism, but also encompasses all other functionalities
that directly or indirectly affect the correct operation of the
reference validation mechanism. Using a operating system
as an example, the Trusted Computing Base of the system
includes the object management and access control functions.
The object management function is responsible for creating
objects and processing requests. The access control function
contains both rules and security attributes that support the
access control decision-making process. The Trusted Com-
puting Base partitions the hardware and software into two
parts: the part inside the Trusted Computing Base is referred

123



158 W. Xu et al.

to as trusted (TCB) and the part outside the Trusting Com-
puting Base is referred to as untrusted (N-TCB).

2.3 Information flow model

In an operating system, the operations between subjects and
objects can be classified as wri te_like or read_like [7]
and the operations between subjects can be expressed as
calls. If a subject s1 can write to an object o (wri te(s1, o)),
which can be read by another subject s2 (read(o, s2)), we
say there is a flow transition from a subject s1 to a subject s2

( f lowtrans(s1, s2)). The subject to subject calling relation-
ship is considered as a flow transition from a subject s1 to a
subject s2 if s1 can call s2.

Definition 1 The Flow Transition. f lowtrans(si , s j ) spec-
ifies that information flows from a subject si to a subject s j .
We say there is a flow transition from a subject si to a subject
s j if: (∃o ∈ O : wri te(si , o) ∧ read(s j , o)) ∨ call(s1, s2).

The flow transition describes the direct information flow
between subjects. Suppose there is a sequence of flow tran-
sitions f lowtrans(si−1, si ) for subjects i = 1, . . . , n, then
without loss of generality there is an information flow path
from a subject s0 to a subject sn .

Definition 2 The Information Flow Path. f lowpath(s0, sn)
specifies a sequence of flow transitions from a subject si to a
subject s j . Assume there is a flow transition f lowtrans(si−1,
si ) for i = 1, . . . , n then f lowpath(s0, sn) is represented as:∧n

i=1 f lowtrans(si−1, si ).

Traditional models describing information flow related
to integrity and confidentiality include Lattice [4], Bell-
LaPadula [32], and Biba [3] models. The Biba model
is related to integrity, the Bell-LaPadula model is con-
cerned with confidentiality and the Lattice-based approach
is the combination of Biba and Bell-LaPadula models. The
integrity property in Biba model is fulfilled if a high integrity
process cannot read lower-integrity data, execute lower-
integrity programs, nor otherwise obtain lower-integrity data
in any other manner. In SELinux policy analysis, we later
adopt Biba or Bell-LaPadula models in checking informa-
tion flow paths and finding possible policy violations against
security goals.

3 Framework overview: visualization-based policy
analysis

In this section, we present our framework for enabling policy
visualization with the emphasis on SELinux policies. Our
framework consists of the following major modules:

– Policy Files: The policy files include the security
policy, role permission mappings, TCB and N-TCB
definitions and the goal-related rule labeling. These pro-
vide information related to policy statements, mappings
of the operations between the subjects and objects, the
initial TCB/N-TCB classification, and types targeted by
the different security goals (G1 to G6).

– Policy Parser: This module involves the parsing of poli-
cies and the mapping of policies into goals and TCB def-
initions. This information is used to compile the policy
graph, which is discussed in the subsequent section.

– User Input: This module is composed of the overview
module which provides a general view of the policy
graph, the content view module which is used for viewing
the policy statements, the detailed view module which is
used for exploring detailed portions of the policy graph,
and the policy analysis module which provides interac-
tive interfaces used for analyzing and finding the policy
violations.

– Query: This module enables the user to specify, translate
and execute queries against the policy graph. The query
writer helps the user specify the query. The query is then
translated into path queries on the policy graph by the
query translator and finally the query executor applies
path finding algorithms on the policy graph to execute
the query.

– Policy Visualization: This module provides the visual-
ization capabilities. It provides several graph visualiza-
tion layouts for the query computed on policy graphs such
as the semantic substrates and the adjacency matrix. It
also enables the user to perform several operations on the
visual layouts such as zoom, pan, annotation, rearrange-
ment and clockwise.

3.1 Policy visualization

In our framework we use information visualization tech-
niques to visualize the policy so that the system administrator
is empowered to better understand the configured policy. In
this section, first we define the policy graph, then we present
our proposed semantic substrates and adjacency matrix
policy visualization techniques. A policy graph is defined
as:

Definition 3 A Policy Graph is a directed categorized graph
G = (V, E), where the set of vertices V and the set of
edges E represent the types of entities and the flow transitions
between them respectively.

– V = Vo ∪ Vs ∪ Vr ∪ Vu is the set of nodes representing
different entities. Vo, Vs , Vr , and Vu are the set of nodes
that represent objects, subjects, roles, and users, respec-

123



Visualization-based policy analysis for SELinux 159

(a) (b)

Fig. 2 Semantic substrate template and example

tively. The objects are the assigned types and the subjects
are the assigned domains.

– E = Er ∪ Ew ∪ Ec is the set of edges describing infor-
mation flow between the different vertices. Given subject
vertices vsi , vsk ∈ Vs and object vertex Vobj ∈ Vo:

– (Vsi , Vobj ) ∈ Ew if there is a wri te(si , obj).
– (Vobj , Vsk ) ∈ Er if there is a read(sk, obj).
– (Vsi , Vsk ) ∈ Ec if there is a call(si , sk).

Two information visualization techniques are related to
visualization work: Semantic Substrates and Adjacency
Matrix. Semantic Substrates [2] is a visualization method
that generates graph layouts that are based on user-defined
semantic substrates, which are non-overlapping regions in
which node placement is based on node attributes. Also,
users interactively control link visibility to limit clutter and
thus ensure comprehensibility of source and destination. Of
course semantic substrates are effective only if there exist
some categorical attributes or if a numerical attribute can be
used to form categories. Although there are limitations in
the implementation, the utility of semantic substrates appar-
ently copes with a large number of nodes and links. Also, as
the node-link-based diagram, the semantic substrates method
shows strong advantages in small graphs. However, in many
situations, the graph may be very big and dense. Adjacency
matrix [15] is widely used in graph visualization because it
can effectively display a big and dense graph by interpreting
the structural information embedded in a matrix view of a
graph. Although adjacency matrices can be used to visualize
both directed and undirected graphs, it is argued that find-
ing the path from one node to another node in the directed
graph might not be an essential ability. In the following, we

will explain how to use these techniques to visualize security
policies.

3.1.1 Semantic substrates

Several visualization studies concluded [2,6] that humans
perceive data coded in spatial dimensions far more eas-
ily than those coded in non-spatial ones. Building on these
results, we propose the use of semantic substrates based on
node attributes to layout nodes in non-overlapping screen
regions. We also make use of non-spatial cues, such as
color or shape to emphasize certain nodes or a group of
nodes. An SELinux policy graph consists of mainly four
node categories, namely User, Role, Domain and Type. Fur-
thermore, domains and types can be further classified, for
example administration domain and user program domain.
Based on this semantic classification of nodes, the policy
graph can be displayed spatially by distributing nodes into
non-overlapping regions. Figure 2 shows the semantic sub-
strate template and examples. The Y -axis is divided into
regions, where each region contains nodes representing a
certain entity. Furthermore, in each region, nodes represent-
ing entities with different classifications are placed in dif-
ferent districts on the X -axis. Different colors and shapes
are used to aid the identification of nodes, for example,
black circles, red circles and black squares are used to repre-
sent trusted domains, untrusted domains and protected types,
respectively. Based on the policy graph definition, we dis-
tinguish the transitions between nodes by assigning differ-
ent colors to the different transition classes. For example,
the user to role assignment is represented by a red arc,
and similarly the role to domain, domain to type and type

123



160 W. Xu et al.

(a) (b)

Fig. 3 Adjacency matrix template and example

to domain are denoted with other colors. One advantage of
semantic substrates is that the administrator can easily visu-
alize links that cross from one category (region) to another
region [2].

3.1.2 Adjacency matrix

The semantic substrates is a very good choice for finding a
path, given that the links are not heavily crossed or tangled.
For visualizing a path in a dense policy graph we propose
to use an adjacency matrix approach which is more com-
pact and free of visual clutter [15,29]. We further enhance
the path visualization capabilities of the adjacency matri-
ces approach by adding direction characteristics. We also
develop a direction-based approach that enables the admin-
istrator to intuitively trace the visualized paths.

Figure 3a shows our proposed adjacency matrix visualiza-
tion template. The nodes are arranged on both the X -axis and
the Y -axis. To visualize a path P = {v0, v1, . . . , vn} in the
adjacency matrix, we highlight entries (vi , vi ) and (vi , vi+1),
for i = 0, . . . , n − 1. We draw an arc from entries (vi , vi )

and (vi , vi+1) for i = 0, . . . , n −1, and we draw an arc from
entries (vi−1, vi ) and (vi , vi+1) for i = 0, . . . , n − 1. Fig-
ure 3b shows the visualization of path, P = {d2, t2, d4, t1}.
The series of arcs carry all information of the original path.
In our template the types and domains are arranged on both
the X -axis and the Y -axis. Furthermore, the grid is divided
into four quadrants:

– Quadrant 1: This is the write quadrant, a slot (di , t j )

signifies that a domain di can write to a type t j .
– Quadrant 2: Slot (di , d j ) signifies that a domain di can

call a domain d j .
– Quadrant 3: This is the read quadrant. A slot (ti , d j )

signifies that a type ti can read by a domain d j .

– Quadrant 4: Slot (ti , t j ) is used to enable transition.

For example, a path P = {d2, t2, d4, t1} represents informa-
tion flow wri te(d2, t2), read(d4, t2) and wri te(d4, t1). In
our proposed adjacency matrix template this requires the path
to visit the write quadrant then the read quadrant. Therefore,
information flow paths will always follow a clockwise direc-
tion. Using this property, an administrator can easily find the
directed path information by scanning the adjacency matrix
template. Furthermore, we use different colors to represent
trusted, non-trusted and goal protected entities in the adja-
cency matrix.

4 Security policy querying

Users may have difficulties in writing or formulating a
query [31]. The idea of the visual query formulation is to
help system administrators specify precise queries on the
policy base using an interactive visual querying technique.
Using an approach similar to the Query by Example (QBE)
for querying relational data [24,25], our approach provides
a user interface and a policy graph that enables the adminis-
trator to create and run queries against the policy base. The
queries are generated by connecting our proposed query oper-
ators to formulate the intended information flows. The query
classification and operators are designed to provide func-
tionalities adopted from the previous policy analysis mech-
anisms [36,27]. In general, there are two classes of queries:

Q1. Identify policy integrity violations based on information
flow against security goals.

Q2. Identify other policy violations like separation of duty
and incompleteness.

123



Visualization-based policy analysis for SELinux 161

(b)(a)

(d) (e) (f)

(c)

Fig. 4 Example query results

4.1 Query classification

Integrity checking is based on performing reachability
analysis on the policy graph. For example, PAL [27] focused
on finding information flow paths from N-TCB to TCB.
In addition to the TCB and N-TCB classification, our
framework provides a goal-related policy classification,
which enables us to query information flow paths affecting
resources protected by certain goals. Also, we provide a set
of basic query classes that are supported by our framework.
A node represents a user, role, type or domain, and a group
represents a set of nodes. Groups include TCB, N-TCB, goal-
related nodes, and user-defined groups.

C1. Node to Node information flow paths. This enables the
querying for information flow from a specific domain
to a specific type. Figure 4a shows the query result in
the form of the information flow path from a domain
mount_t to a type fixed_disk_device_t.

C2. Group to Groups information flow paths. This enables
the querying for information flow from N-TCB to TCB,
or from an N-TCB to a set of goal-related domains or
types. Figure 4b shows the query result from N-TCB to
TCB.

C3. Node (Group) to Group (Node) information flow paths.
This enables the querying for information flow from one
domain to the goal protected types, or from N-TCB to
a certain domain. Figure 4c shows the result of finding
information flow paths from all N-TCB to the mount_t
domain.

C4. Node to Node information flow paths through another
Node. It helps finding information flow from one type to
another type through a certain type, where types can be
domains or types. Figure 4d shows the result of finding
information flow path from a domain user_games_t to
a type fixed_disk_device_t through a type devtty_t.

C5. Reachability. It enables to find all possible informa-
tion flows from or to a certain type. For example, it
finds all information flows to fixed_disk_device_t, or
the information flows from user_t. Figure 4e shows
the result of finding the information flow paths to
fixed_disk_device_t.

C6. Separation of Duty (SoD). This helps check constraints
on authorizations to types. For example, in the context
of SELinux, separation of duty can be interpreted as
separation of domains allowed to modify (e.g., write
or create) executable files from the domains allowed to
execute those executables. In PAL [27], these queries
are restricted to direct access. In the SELinux example
policies, we introduce policies that enable the rootkit_t
domain to have write access on sendmail_exec_t type
and transition operation on sendmail_t. By querying the
policy graph we are able to locate this SoD violation as
depicted in Fig. 4f.

4.2 Basic query formulation

Our framework provides an interactive drag and drop query
platform that enables the administrators to issue information
flow queries by simply connecting the provided components

123



162 W. Xu et al.

Fig. 5 Query construction

compared to current policy analysis frameworks [36,27]
which are based on scripting. Figure 5 summarizes the basic
visual components.

– Element Nodes (E-Nodes) are shaped as labeled
circles; their label represents the attributes of the element.
For example, using SELinux policy as an example, the
element nodes include USER, ROLE, DOMAIN, TYPE,
TCB, NON-TCB and Goal. The character # is used to
help the attribute specification. For example, Goal# can
be customized to be G1, G2, etc.

– Operator Edge (O-Edge) is represented as the curve that
connects the element nodes to another element nodes.
The label of the operator edges represents the query clas-
sification of the query. Based on the query classification,
the operator edges include write, read, call, have, indirect
have, indirect flow to, SOD and indirect SOD.

– Element Nodes Annotation (EN-Annotation) is to specify
the element nodes value. It can be a single value or a
set. When the policy administrator draws the query, this
value can be partially specified as the wildcards “?” and
“*” denote any character and any sequence of characters,
respectively.

– Operator Edges Annotation (OE-Annotation) is to spec-
ify required path properties. For example, to query the
information flow path from one node to another node,
we can specify a query to find the shortest path, all the
paths, any path or the paths that can be found in the time
limitation. The value “*” denotes all paths.

Figure 5e shows composed queries that specify how to query
policy graph node relationships such as have and flow path.

4.2.1 Join query construction

The policy administrator can use a join query to construct
more complex queries such as finding the domain that can
both write and read the goal protected objects. Also, using our
join query the policy administrator can accumulate several
query results on a single graph. Based on the different ways
of sharing E-Nodes, we define three basic joins: Simple Join,
Merge Join and Tuple-sharing Join. More complex join can
also be constructed by combining the three basic joins.

– Simple Join specifies that a set of E-Nodes is sequentially
connected through the O-Edges; given E-Nodes { ni , n j ,
nk} and O-Edges {oi , o j }, if oi (ni , n j ) and o j (n j , nk),
then we say there is a simple join. An example join query
is shown in Fig. 5f.

– Tuple-sharing Join specifies that two or more E-Nodes
are connected out from the same E-Node through the
O-Edges; given E-Nodes {ni , n j , nk} and O-Edges {oi ,
o j }, if o j (ni , nk) and ok(ni , nk), then we say there is a
tuple-sharing join.

– Merge Join specifies that two or more E-Nodes are sort-
merge into one E-Node through the O-Edges; given
E-Nodes {ni , n j , nk} and O-Edges {oi , o j }, if oi (ni ,
nk) and o j (n j , nk), then we say there is a merge join.

4.3 Query execution

Based on the definitions of the join query construction, the
identification of the different join format can facilitate the
query execution. The paths computed during the query exe-
cutions are based on the OE-Annotations associated with
operator edges which include the shortest path, any path or
the paths found given a execution time limit. Query execu-
tion makes use of the shared nodes between group nodes. For
example, in the tuple-sharing join (shown in Fig. 5), suppose
A is NTCB, B is TCB, C is fsadm_t and the O-Edges having
same annotation, since fsadm_t belongs to TCB, the query
only needs to be executed from A to B. Similarly, in the merge
join, if D is NTCB and E is a subset of NTCB (e.g., xdm_t) or
shares labels with the NTCB, the query will evaluate paths
from D to F then the paths from E − (E ∩ D) to F.

Referring to the algorithm in Fig. 6, the policy query
execution algorithm is mainly composed of two parts. In
the first part, the algorithm identifies all the E-Nodes from
the query graph using the function get Element Nodes(Gq ),
then for each E-Node na , it finds all the outgoing O-Edges
from node na using getConnect Edges(na , Gq ). In the sec-
ond part, for each of the edges identified e in the previ-

123



Visualization-based policy analysis for SELinux 163

Fig. 6 Query execution algorithm

ous step, the algorithm identifies the nodes connected to
the edge identified by nb which are retrieved by the func-
tion f indConnect Node(e, na , Gq ). Since merge query
and tuple-sharing are built based on the shared E-nodes,
there will be duplicated nodes retrieved from the function
f indConnect Node(e, na , Gq ). If na and nb are part of the
merge query, the duplicated nodes are removed from na by
using the expression na − nb.get MergeNodes(nb,e), the
merge join nodes information are stored in the nb attribute
and can be retrieved using nb.get MergeNodes(nb,e). On
the other hand, if na and nb are part of tuple-sharing,
the duplication of nb using nb − na .getT upleNode(na ,e),
where the information of tuple-sharing nodes is main-
tained in the na attribute and can be retrieved using
na .getT upleNode(na ,e). After the information duplication
is removed, the query from na to nb with an operator e is exe-
cuted. Finally, the executed queries are leveraged by adding
the nodes and edge information into na and nb respectively
using na .addT upleNode(nb) and nb.add MergeNode(na).

5 Case study with SELinux policies

In this section we discuss the implementation details of our
proposed framework, we give design snapshots of our PVA
tool and we discuss how the tool is used to identify policy
violations in SELinux policies.

5.1 Policy visualization analysis tool (PVA)

The PVA tool is presented to the user via a self explana-
tory graphical user interface. To enhance the cognition and
understanding of the policy information, we provide imple-
mentations of both the semantic substrates- and adjacency
matrix-based visualization layouts. Another important aspect
of our design is to be expressive and directly mapped to the
real system policy analysis. By providing a visualization-
based policy query platform, our design enables the admin-
istrator to build a query by example.

Our implementation is based on the Java JDK1.6 and sup-
porting libraries. The graph drawing modules were based on
our extensions to the open source package Piccollo [9]. Our
parsing tool is based on the policy structure adopted by the
APOL [36] tool. In this case study the SELinux policy binary
file policy.19 was used. Figure 7a shows a snapshot of
our tool. The policy administrator can import, analyze, query
and modify the policy through the menu. The left window
is composed of two parts: semantic substrates-based visual-
ization and adjacency matrix-based visualization, and each
window includes the tabs for view, analysis, and violation.
The view tab provides the GUI for the policy graph overview,
content view, and detail view, e.g., viewing the whole
policy graph through zoom in, zoom out, etc. The analysis
tab supports the analysis of the policy by enabling the admin-
istrator to select the security goals of interest and ultimately
locate policy violations with the help of the query function.
The violation tab displays all the policy statements that are
involved in a security violations. Furthermore, in this tab the
policy administrator can directly modify the policy by using
the text editor or directly editing the policy graph. In the main
window, the policy graph, query results, goal-related policy
graphs and the policy violation graph are displayed.

5.2 Policy graph

The main window in Fig. 7a shows the visualized SELinux
policy based on semantic substrate design proposed in
Sect. 3.1. The policy is composed of 308 domains, 1092
types and 31604 links. The Y -axis is divided into four regions
including USERS, ROLES, DOMAINS and TYPES. The
X -axis is labeled using the domain and type classifications
discussed in Sect. 3.1. The domain regions are divided into
four different areas SD (System Domain), DAE (Daemons
Domain), PRO (Program Domain) and ULO (User Login
Domain). The type regions are divided into seven differ-
ent areas ST (security types), DT (device types), FT (file
types), PT (procfs types), DE (devpts types), NF (nfs types),
and NE (network types). To help the policy administrator
to easily identify the different regions, the elements in non-
neighboring regions are represented as different shapes, for
example users and domains are expressed with circle, and

123



164 W. Xu et al.

(a)

(b) (c) (d)

Fig. 7 PVA tool introduction

roles and types are expressed with rectangle. The edges
between different regions are represented by different col-
ored lines, for instance the write operation between a domain
and a type is represented by red edges and the read operations
by green edges. Also, policy administrator can view node
attributes by clicking on the specific nodes. Figure 7b shows
the adjacency matrix-based policy visualization method,
which was compiled by selecting a subset of the nodes in
the semantic substrates overlay.

5.3 Policy query and violation detection

Figure 7c shows the graphical query interface and a query
designed to discover the paths from N-TCB to resources
related to the goal G1 (limiting raw access to data) such
as fixed_disk_device_t through a specific type
devtty_t and TCB resources. Starting from left to right
(Fig. 7c), the first node selects the N-TCB resources and

finds the paths to a type devtty_t, then finds the paths
from devtty_t to the TCB resources. Finally, the query
builds the paths from the TCB resources to the goal G1
fixed_disk_device_t device. Figure 7d shows the
identified policy violations by this query. Note that the
display divides the TCB and N-TCB to provide a bet-
ter understanding to the system administrator. Running the
visualization tool on a 1.4 GHz Intel Pentium CPU with
512 MB of memory, query loading and parsing take 15 s
and query execution and display take 21 s. Another exam-
ple query, which investigates information flow paths from
N-TCB to fsadm_t (TCB) without the constraint of pass-
ing through a specific intermediate node, was executed and
displayed in 88 s due to the large number of policy vio-
lations. However, if we only query the information flow
path from user_t (N-TCB) to fsadm_t (TCB), it takes
about 0.5 s. Hence, the time cost depends on the size of the
query set and query results. Table 1 shows identified policy

123



Visualization-based policy analysis for SELinux 165

Table 1 Policy violation
examples Subjects Type : Class Subject Resolution

Example policy violations
200 network fsadm_t Filter

rhgb_t mnt_t:dir fsadm_t Modify

smpmount_t mnt_t:dir fsadm_t Modify

hotplug_t etc_runtime_t:file fsadm_t Ignore

33 unpriv_userdomain:fd use fsadm_t Modify

134 initrc_t:fifo_file fsadm_t Modify

16 removable_device_t:chr_file fsadm_t Modify

3 scsi_generic_device_t:chr_file fsadm_t Modify

200 devlog_t:sock_file fsadm_t Ignore

violations caused by information flow from N-TCB to TCB
fsadm_t.

6 User study

This section describes our user study that was conducted
to evaluate the usability of PVA. Participants in our study
browse and analyze SELinux security policies using PVA
and APOL [36] that is a GUI-based tool developed by
Tresys Technology to analyze SELinux policies. Currently,
the APOL analysis tool is issued together with other Linux
packages such as Fedora Core. APOL helps browse and
search policy components (e.g., types, attributes, object
classes, roles, users, and booleans), searching type enforce-
ment and other rules, and viewing file contexts from a
filesystem. In addition, APOL allows policy administra-
tors to perform automated, complex analysis of a pol-
icy, which include domain transition, file relabel, types
relationship, and information flow analysis. In our eval-
uation work, we mainly focus on comparison between
PVA and APOL. Also, participants are required to com-
pare semantic substrates method and adjacency matrix
method in displaying of SELinux security policies and policy
violations.

6.1 Participant enrollment and general feedback

To enroll the participants, we first interviewed some student
participants after giving guest lectures. Other participants
were recruited from several research laboratories and the sys-
tem administrator office of the college. In addition, we con-
tacted some participants who were recommended as either
Linux expert or system administrators and had a total of 60
enrolled users.

The sample for our study consists of system administra-
tors (15.2 %), graduate students (72.7 %), and undergraduate

students (12.1 %) with different specialities within computer
science discipline (69.7 % information security; 6.1 % com-
puter networking; 6.1 % database systems; 6.1 % computer
graphics and visualization; and 12.1 % other) of various ages
[12.1 % were 18–22 years old (y. o.), 42.4 % were 22–26
y. o., 30.3 % were 26–30 y. o., and 15.2 % were 30–40 y.
o.]. Participants differed in terms of their most frequently
used OS (15.2 % Linux; 72.7 % Windows; and 12.1 % Mac
OS), the frequency with which they change OS configura-
tion settings (27.3 % never; 54.5 % monthly; 12.1 % weekly;
and 6.1 % daily), the frequency with which they configure
or check their OS security policies (30.3 % never; 54.5 %
monthly; 6.1 % weekly; and 9.1 % daily), whether or not they
use special software tools to manage their OS security poli-
cies (21.2 % use special software tools; 63.6 % do not use
special software tools; and 15.2 % do not know whether or
not they use special software tools), the extent to which they
agree that configuring security policies is an important task
(3 % strongly disagree; 0 % disagree; 0 % neither agree not
disagree; 45.5 % agree; and 51.5 % strongly agree), and the
amount of time they would be willing to spend on configuring
a security policy (6.1 % no time; 33.3 % up to 15 min; 30.3 %
up to 30 min; 6.1 % up to 1 h; 3 % up to 2 h; and 21.2 % more
than 2 h).

6.2 User study preparation

The participants are asked to analyze the same security poli-
cies with APOL and PVA. The policy we chose is a real
SELinux policy from a major publisher. We chose this pol-
icy for the following reasons:

– This real policy set is representative of security policies
that the policy administrator might encounter in practice.

– The size of policy set is about 200 KB that covers core
policies and sufficiently helps measure usability of tools.
Although there might be a larger SELinux policy set

123



166 W. Xu et al.

Fig. 8 APOL tool introduction

available, analyzing such policies will bring difficulty for
participants in both evaluating APOL and PVA. On the
other hand, in case the security policy size is too small, the
benefit of visualization-based approach will be probably
downgraded.

First, in order to give ideas about how to use APOL and
PVA and how to compare the two visualization mechanisms
in PVA, we introduced SELinux policy overview to the par-
ticipants and an instruction was provided with screenshots as
shown in Figs. 7 and 8.

The first part of the instruction explains how to use APOL
and PVA for browsing and analyzing security policies. The
participants are instructed to load the security policy set and
browse any contents they are interested in. Then, the par-
ticipants are required to follow the instructions for complet-
ing the following tasks: (1) identifying the information types
containing gcon; (2) identifying all the direct information
flows from jvm_t ; (3) identifying direct information flows
from jvm_t to java_t; (4) identifying indirect informa-
tion flows from test_t to user_install_t ; (5) iden-
tifying direct information flows from jvm_t, test_t to
root_t ; (6) identifying information flows from jvm_t
through root_t to sysxo_t ; (7) identifying direct
information flows from group 1 = {test_t, jvm_t}
to group 2 = {xo_t, root_t} and group 3 = {user
_install_var_t, user_install_exec_t}; and
(8) repeating steps 6 and 7 to examine the result of analy-
sis composition. In addition, the participants are asked to
test the tool freely and provide their feedback on how the
interface is designed, how the security policy is composed,

and other information that would be necessary for our user
study.

The second part of the instruction mainly elaborates how
to use the semantic substrates approach and adjacency matrix
approach separately to visualize the security policy set, read
information from the visualized policy, generate and display
security policy violations against predefined security goals,
and identify the root causes of the existing policy viola-
tion such as why there exists an information flow from an
untrusted domain user_install_t to a trusted domain
sysxo_t.

6.3 User study procedures and data collection

To perform the user study, we installed APOL and PVA
tools on our lab machine in an independent room where
the participant cannot be interrupted during their session.
The participants first performed the five classified policy
queries with example scenarios using APOL and PVA based
on our instruction. Then, the participants were required to
visualize and identify security policy violations with the
Node-Link and Adjacency Matrix approach. For conduct-
ing these steps, the participants are required to use the same
example SELinux policy.

After completing the policy analysis, participants were
asked to complete a post-session questionnaire assessing
their attitudes toward two tools and two approaches, their
experiences with and attitudes toward security policy analy-
sis, their general control inclinations, and their demographic
characteristics.

In the questionnaire, we design totally 20 items to mea-
sure participant attitude including the ease of constructing

123



Visualization-based policy analysis for SELinux 167

queries, the ease of understanding policy analysis results and
the overall ease of using the tool interface. Among these
measures, the first two items are to measure PVA and APOL
in the policy analysis aspect and the latter items focus on
policy browsing, understanding and the overall experience
of the tool interface. For each measure, we design separate
questionnaires for each tool but with semantically equivalent
items. The following summarizes what we intend to measure.

– Ease of constructing queries using APOL and PVA for
policy analysis was measured with 4 items. Participants
were asked to rate the easiness of the processes described
in the items using APOL and PVA functions on a 5-point
rating scale (1 = very complicated to 5 = very easy). A
sample item is “browsing the security policy using APOL
was.”

– Ease of understanding query results using APOL and
PVA for policy analysis was measured with 3 items rated
on a Likert scale (1 = strongly disagree to 5 = strongly
agree). A sample item is “PVA can give you some general
knowledge about the loaded SELinux policy.”

– Overall ease of using the interface using APOL and PVA
for policy analysis was measured with 3 items rated on a
Likert scale (1 = strongly disagree to 5 = strongly agree).
A sample item is “The APOL interface is easy to combine
and compose policy queries.”

– Ease of identifying policy violations using policy visual-
ization functions of Node-Link and the Adjacency Matrix
methods was measured with 3 items rated on a Likert
scale (1 = strongly disagree to 5 = strongly agree). A sam-
ple item is “It is easy to identify trusted and untrusted
domains.”

– Ease of tracing policy violation elements using policy
visualization functions of Node-Link and the Adjacency
Matrix methods was measured with 3 items rated on a
Likert scale (1 = strongly disagree to 5 = strongly agree).
A sample item is “This visualization is clear, not crowded
and not cluttered.”

– Satisfaction with the visualization policy using policy
visualization functions of Node-Link and the Adjacency
Matrix methods was measured with 3 items. Partici-
pants were asked to rate the degree to which they liked
different aspects of the two policy visualization func-
tions on a 5-point rating scale (1 = do not like at all
to 5 = like it very much). A sample item is “View-
ing specific policy element relationships (domains and
types).”

– Scale scores were calculated by computing partici-
pants’ mean responses to the items included in each
scale.

– Participant characteristics were aggregated based on
their feedback such as their age range, specialization,
occupation, and their general attitudes and behaviors

Table 2 PVA versus APOL (number of participants = 32)

Measure items APOL PVA

Mean SD Mean SD

Ease of constructing queries 2.78 .94 4.36 .41

Ease of understanding query results 3.13 .78 4.32 .40

Overall ease of using the interface 2.41 .86 4.42 .43

regarding the configuration of OS settings, such as the
security policies.

For the questionnaire design, we implemented the ques-
tionnaire using the lime survey tool [17] on our lab server.
For each participant, our lab sever recorded their answers to
the questions and helped determine whether or not they fin-
ished the questions. Their answers were stored and can be
exported through a database for subsequent analysis.

6.4 User study results

PVA versus APOL: Paired samples t-tests [23] were con-
ducted to compare participants’ attitudes toward two
approaches in policy analysis. Corresponding to each mea-
sure, we were able to produce the following results:

– Ease of constructing queries: Through calculating the
answers for this measure, the satisfaction tendency for
APOL was (M = 2.78, SD = .94)1 compared to PVA
(M = 4.36, SD = .41). Therefore, we concluded that con-
structing queries with PVA is perceived to be significantly
easier than APOL, where t (32) = −9.67 and p < .001.

– Ease of understanding query results: Based on the the
answers for this measure, the satisfaction tendency was
calculated. APOL’s satisfaction tendency was (M = 3.13,
SD = .78) compared to PVA (M = 4.32, SD = .40). Hence,
understanding query results with PVA is also perceived
to be relatively easier than APOL, where t (32) = −9.07
and p < .001.

– Overall ease of using the interface: Through examining
the answers for this measure, the satisfaction tendency
for APOL was (M = 2.41, SD = .86) compared to PVA
(M = 4.42, SD = .43). Also, the overall interface of PVA is
perceived to be significantly easier to use than the APOL
interface, where t (32) = −11.82 and p < .001.

In summary, participants indicated that all measurements
of the PVA approach were superior to the corresponding
aspects of the APOL approach in performing policy analysis
as shown in Table 2.

1 M and SD denote mean and standard deviation, respectively.

123



168 W. Xu et al.

Table 3 Semantic substrates
versus adjacency matrix
(number of participants = 32)

Measure items Semantic substrates Adjacency matrix

Mean SD Mean SD

Satisfaction with the visualization policy 4.36 .50 4.11 .65

Ease of identifying policy violations 4.40 .40 4.17 .64

Interpretability of visualization results 4.23 .64 3.99 .70

Semantic Substrates versus Adjacency Matrix: With a
method similar to that we used to compare PVA with APOL,
paired samples t-tests [23] were conducted to compare par-
ticipants’ attitude toward the two visualization approaches
for policy analysis. For each measure, our results were as
follows:

– Ease of identifying policy violations: Through
calculating the answers for this measure, the satisfaction
tendency for semantic substrates was (M = 4.40, SD =
.40) compared to adjacency matrix (M = 4.17, SD = .64).
It implies that identifying policy violations with the
semantic substrates visualization is perceived to be easier
than adjacency matrix visualization, where t (32) = 2.21
and p < .05.

– Satisfaction with the visualization policy: Based on the
answers for this measure, although there was a tendency
for participants to be more satisfied with the Node-Link
visualization compared to the adjacency matrix visual-
ization (M = 4.11, SD = .65), this tendency is not statis-
tically significant, where t (32) = 1.98 and p = .056.

– Interpretability of visualization results: Based on the
answers for this measure, the satisfaction tendency for
semantic substrates was (M = 4.23, SD = .64)
compared to adjacency matrix (M = 3.99, SD = .70).
Therefore, we could conclude that interpreting the visual-
ization results with the semantic substrates visualization
is perceived to be not significantly easier than adjacency
matrix visualization, where t (32) = 1.98 and p < .056.

In summary, although there is a tendency for partici-
pants’ perceptions of the semantic substrates visualization
to be more favorable, compared to their perceptions of the
adjacency matrix visualization, this tendency is only signifi-
cant with respect to the ease of identifying policy violations
(Table 3).

6.5 Lessons learned from user study

This section describes some lessons that we learned through
the evaluation of PVA. Although the evaluation itself may
have diverse goals and claims for different types of security
policies, we share our lessons so that other researchers can

consider these lessons for their policy analysis work. The
lessons learned are summarized as follows:

Lesson 1: Ensure that participants understand the
assigned task. It is necessary to clearly communicate with
participants and confirm participants’ understanding before
initiating the survey. We found out that the best way to achieve
this objective was to ask the participants to explain back to
us what they understood and they needed to do. These partic-
ipants had less problems in executing the assigned tasks than
the participants who simply nodded to passively indicated
that they understood.

Lesson 2: Test and validate materials before user study. It
is very important to run a pre-test before starting the survey.
In our experiments, we first tested all the materials including
instruction, tools and questionnaire. Then, we invited few
participants to evaluate our materials and setup, so that the
design of the overall experiment could be fully debugged,
modified and validated before conducting the user study.

Lesson 3: Use as little paper work as possible. Initially,
we designed a hard-copy questionnaire which was perceived
to be too exhaustive and boring to the participants. Also the
paper work caused additional problem such as bringing over-
head to the data analysis, difficulty for data backup, and so
on. Hence, we prepared online-version of the questionnaire
which tremendously helped us leverage the benefits of web-
based application such as interactive question & answer, data
collection, analysis, and backup.

Lesson 4: Minimize the chances that participants may
make mistake. It was a challenging task to minimize the
chances that participants could make mistakes unrelated to
the claims. In other words, we should pay attention not to
introduce unnecessary complications to the tasks. For exam-
ple, in our instructions, we stated that PVA allows users to
perform the same kind of security policy analysis through
two different ways. Having both mechanisms to perform the
analysis, some participants felt that they could choose one
mechanism based on their first impression of GUIs. Con-
sequently, it would introduce unnecessary confusion to the
participants. For another example, in our initially designed
questionnaire, it had a “no answer” option for some items,
which resulted in data collected to be invalid and required us
to re-invite participants.

There are several directions that we may consider to
improve our user study for the future work. First, the lack

123



Visualization-based policy analysis for SELinux 169

of policy analysis tool was one of critical obstacles in our
user study. Due to such limitations, we could select only
the most sophisticated tool APOL for our user study. There-
fore, we could not have a chance to test PVA with more
generic evaluation criteria. Also, APOL does not consider
trusted and untrusted concepts in the tool. With such a dis-
tinction, we can formulate and detect information flows.
Hence, we were not able to examine corresponding func-
tionalities of PVA compared to APOL. Second, some naive
participants have never used any policy analysis tool before
so they were not able to provide more constructive feedback
on each questionnaire–even though their unbiased feedback
was significantly helpful to evaluate our tool. The partici-
pants with different background are critical for user study
but it is also crucial to be balanced. Third, both APOL and
PVA worked a bit slow when analyzing a large security pol-
icy set to identify policy violations against a large volume of
information flow. However, some participants were intoler-
ant of such delays. Especially, if the policy size reaches giga-
byte, APOL and PVA consumed most of system resources.
Hence, we had to reduce the size of policy set as we discussed
before. The evaluation with diverse data sets would provide
some potential clues to improve our tools in terms of inter-
face design and functional aspects. Fourth, although our cur-
rent user sample can evaluate the user study well, enrolling
more users into the user study will make the study more
meaningful.

7 Related work

Previous typical methods and tools developed to analyze
SELinux policies include Gokyo [12,28,14,13], SLAT [7],
PAL [27] and APOL [36]. Gokyo was used to check integrity
of a proposed TCB for SELinux. Integrity of the TCB holds if
there is no type that can be written by a type outside the TCB
and read by a type inside the TCB, except for special cases
in which a designated trusted program sanitizes untrusted
data when it enters the TCB. Because Gokyo only identi-
fies one common TCB in SELinux and SELinux has mul-
tiple security goals with obviously different kinds of trust
relationship, Gokyo cannot cover all the aspects of policy
violations. SLAT (Security-Enhanced Linux Analysis Tool)
defines an information flow model and the SELinux poli-
cies are analyzed based on this model. In the information
flow model, SLAT characterizes information flow caused by
allowed operations for a given policy. It defines the infor-
mation flow relation (write operation transfers information
from process to resource; read operation transfers informa-
tion from resource to process) as the flow transition. Then,
through this flow transition relationship, a path is defined
to reflect a sequence of events through which some causal
effects are transmitted from the first process to the last. SLAT

also contains an implementation by analyzing an information
flow model. Sarna-Sota et al. [7] used SLAT’s information
flow model to implement a framework for analyzing config-
uration policies in SELinux; it is called PAL (Policy Analy-
sis using Logic Programming). PAL creates a logic program
based on an SELinux policy to run queries for analyzing the
policy. APOL [36] is a tool developed by Tresys Technology
to analyze SELinux configuration policies. Its main features
include forward and reverse domain transition analysis, direct
and transitive information flow analysis, relabel analysis, and
type relationship analysis based on user request.

SLAT, PAL and APOL tools require the administrator to
be well familiar with SELinux policies for generating queries
against the policy base which ultimately leads to extracting
meaningful information. Furthermore, APOL tool provides
graphical interface to aid policy analysis and supports policy
query. However, our PVA has the following differences and
advantages compared to APOL. First, PVA is built based on
a policy visualization framework. All the policy rules can be
expressed with graphs and their relationships are automati-
cally displayed. APOL only provides text-based expressions
for the policy rules. A policy administrator has to read the pol-
icy rules one by one for identifying the relationship between
rules. Second, we support the visual query formulation that
enables a user to easily construct the query. Especially, the
administrator can construct complex queries to examine poli-
cies for their need. APOL only supports a simple query con-
struction based on clicking buttons and choosing items from
the list provided by the graphical interface. Our user study
clearly indicates users found our policy analysis framework
more intuitive to perform tasks. In addition, PVA tool sup-
ports N-TCB and TCB concepts for policy violation detection
while APOL does not support such concepts and correspond-
ing functions.

8 Conclusion

In this paper, we have proposed a visualization-based pol-
icy analysis framework to analyze the security policies.
We have provided both semantic substrates and adjacency
matrix approaches for policy visualization. We presented
our visualization-based query mechanism that enables the
administrator to query the policy base by simply con-
necting query components, which is similar to the query
by example approach. Our main methodology also facil-
itates visualization-based queries to identify the possi-
ble policy violations. We have developed a PVA tool to
implement our framework. Additionally, we discussed how
to use our framework to analyze SELinux policies and
the results confirmed the feasibility and applicability of
our methodology. In addition, we have conducted a user

123



170 W. Xu et al.

study to evaluate the usability of our policy visualization
framework.

For the future work, we plan to investigate node and link
reordering mechanisms that minimize the link crossings and
entanglement for more appealing policy visualizations. Also,
the application of our framework for visualizing and ana-
lyzing the web-based access control policy such XACML
policies will be investigated.

Acknowledgments The work of Gail-Joon Ahn and Wenjuan Xu was
partially supported by the grants from National Science Foundation and
Department of Energy.

References

1. Anderson, A.P.: Computer Security Technology Planning Study.
Technical Report ESD-TR-73-51, II (1972)

2. Aris, A.: Network visualization by semantic substrates. IEEE
Trans. Vis. Comput. Graph. 12(5), 733–740 (2006). Senior
Member-Ben Shneiderman

3. Biba, K.J.: Integrity Consideration for Secure Compuer System.
Technical report, Mitre Corp. Report TR-3153, Bedford, Mass
(1977)

4. Denning, D.E.: A lattice model of secure information flow. Com-
mun. ACM 19(5), 236–243 (1976)

5. Erbacher, R.: Intrusion behavior detection through visualization.
In: IEEE International Conference on Systems, Man and Cyber-
netics, pp. 2507–2513 (Oct 2003)

6. Green, M.: Toward a perceptual science of multidimensional
data visualization: Bertin and beyond. Available from http://www.
ergogero.com/dataviz/dviz2.html, 1998

7. Guttman, J., Herzog, A., Ramsdell, J.: Information flow in operat-
ing systems: Eager formal methods. In: Workshop on Issues in the
Theory of Security (WITS) (2003)

8. Herman, I., Melancon, G., Marshall, M.: Graph visualization and
navigation in information visualization: A survey. IEEE Trans. Vis.
Comput. Graph. 6(1), 24–43 (2000)

9. H.C. I. L. at University of Maryland. Piccolo. Available from http://
www.cs.umd.edu/hcil/jazz/download/index.shtml

10. Itoh, T., Takakura, H., Sawada, A., Koyamada, K.: Hierarchical
visualization of network intrusion detection data. IEEE Comput.
Graph. Appl. 26(2), 40–47 (2006)

11. Jaeger, R.S.T., Zhang, X.: Resolving Constraint Conflicts. In: Sac-
mat ’04: Proceedings of the Ninth Acm Symposium on Access
Control Models And Technologies, pp. 105–114 (2004)

12. Jaeger, X.Z.T., Edwards, A.: Policy management using access con-
trol spaces. ACM Trans. Inf. Syst. Secur. (TISSEC) 6, 327–364
(2003)

13. Jaeger, T., Sailer, R., Shankar, U.: Prima: policy-reduced integrity
measurement architecture. In: SACMAT ’06: Proceedings of the
Eleventh ACM Symposium on Access Control Models and Tech-
nologies, pp. 19–28. ACM, New York, NY, USA (2006)

14. Jaeger, T., Sailer, R., Zhang, X.: Analyzing integrity protection in
the selinux example policy. In: SSYM’03: Proceedings of the 12th
Conference on USENIX Security Symposium, pp. 59–74. USENIX
Association, Berkeley, CA, USA (2003)

15. Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or node-link dia-
grams: which visual representation is better for visualising connec-
tivity models? Inf. Vis. 5(1), 62–76 (2006)

16. Lee, C., Trost, J., Raheem, N.G.B., Copeland, J.: Visual firewall:
Real-time network security monitor. In: IEEE Workshops Visual-
ization for Computer, Security, pp. 129–136 (2005)

17. Lime Survey Tool http://www.limesurvey.org/
18. Loscocco, P., Smalley, S.: Integrating flexible support for secu-

rity policies into the linux operating system. In: USENIX Annual
Technical Conference, FREENIX Track, pp. 29–42 (2001)

19. Loscocco, P.A., Smalley, S.D.: Meeting critical security objectives
with security-enhanced linux. In: Proceedings of the Ottawa Linux
Symposium (2001)

20. Mathew, S., Giomundo, R., Upadhyaya, S., Sudit, M., Stotz, A.:
Understanding multistage attacks by attack-track based visualiza-
tion of heterogeneous event streams. In: VizSEC ’06: Proceedings
of the 3rd International Workshop on Visualization for Computer
Security, pp. 1–6. ACM, New York, NY, USA (2006)

21. Nidhi, S.: Fireviz: A personal firewall visualizing tool. In: Thesis
(M. Eng.), Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science (2005)

22. Noel, S., Jajodia, S.: Managing attack graph complexity through
visual hierarchical aggregation. In: VizSEC/DMSEC ’04: Proceed-
ings of the 2004 ACM workshop on Visualization and data mining
for computer security, pp. 109–118. ACM, New York, NY, USA
(2004)

23. Paired Samples T-tests. http://www.statisticssolutions.com/
methods-chapter/statistical-tests/paired-sample-t-test/

24. Reiterer, H., Muler, G.: A visual information seeking system for
web search. In: Proceedings of the Oberquelle, H., Oppermann, R.,
Krause, J. (eds) Mensch & Computer Conference, pp. 297–306,
(March 2001)

25. Reiterer, H., Tullius, G., Mann, T.: Insyder: A content-based visual-
informationseeking system for the web. Springer-Verlag GmbH,
International Journal on Digital Libraries (2005)

26. Saltzer, J., Schroeder, M., (1975) The protection of information in
computer systems. In: Proceedings of the IEEE, pp. 1278–1308.

27. Sarna-Starosta, B., Stoller, S.D.: Policy analysis for security-
enhanced linux. In: Proceedings of the 2004 Workshop on Issues
in the Theory of Security (WITS), pp. 1–12 (April 2004)

28. Shankar, U., Jaeger, T., Sailer, R.: Toward automated information-
flow integrity verification for security-critical applications. In:
NDSS, The Internet Society (2006)

29. Shen, Z., Ma, K.: Path visualization for adjacency matrices. In:
Proceedings of Eurographics/IEEE Symposium on Visualization
(EuroVis), May 2007

30. Smalley, S.: Configuring the SELinux policy. http://www.nsa.gov/
SELinux/docs.html, 2003

31. Sutcliffe, A.G., Ennis, M., Watkinson, S.J.: Empirical studies of
end-user information searching. J. Am. Soc. Inf. Sci. 51(13), 1211–
1231 (2000)

32. Secure computer systems: Unified exposition and multics interpre-
tation. MITRE Corporation, 1976

33. System management concepts: Operating system and devices, 1
ed., (1999)

34. Thompson, R.S., Rantanen, E.M., Yurcik, W., Bailey, B.P.: Com-
mand line or pretty lines?: comparing textual and visual interfaces
for intrusion detection. In: CHI ’07: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 1205.
ACM, New York, NY, USA (2007)

35. Tran, T., Al-Shaer, E.S., Boutaba, R.: Policyvis: Firewall security
policy visualization and inspection. In: Lisa, pp. 1–16 (2007)

36. Tresys Technology Apol. http://www.tresys.com/selinux/
37. Yao, D., Shin, M., Tamassia, R., Winsborough, W.H.: Visualization

of automated trust negotiation. In: VizSEC 05: IEEE Workshop on
Visualization for Computer, Security, Oct 2005

38. Yin, X., Yurcik, W., Treaster, M., Li, Y., Lakkaraju, K.: Vis-
flowconnect: netflow visualizations of link relationships for secu-
rity situational awareness. In: VizSEC/DMSEC ’04: Proceedings
of the 2004 ACM Workshop on Visualization and Data Mining
for Computer Security, pp. 26–34. ACM, New York, NY, USA
(2004)

123

http://www.ergogero.com/dataviz/dviz2.html
http://www.ergogero.com/dataviz/dviz2.html
http://www.cs.umd.edu/hcil/jazz/download/index.shtml
http://www.cs.umd.edu/hcil/jazz/download/index.shtml
http://www.limesurvey.org/
http://www.statisticssolutions.com/methods-chapter/statistical-tests/paired-sample-t-test/
http://www.statisticssolutions.com/methods-chapter/statistical-tests/paired-sample-t-test/
http://www.nsa.gov/SELinux/docs.html
http://www.nsa.gov/SELinux/docs.html
http://www.tresys.com/selinux/


Visualization-based policy analysis for SELinux 171

39. Yurcik, W.: Visualizing netflows for security at line speed: the
sift tool suite. In: LISA’05: Proceedings of the 19th Confer-
ence on Large Installation System Administration Conference,
pp. 169–176. USENIX Association, Berkeley, CA, USA (2005)

40. Yurcik, W.: Tool update: visflowconnect-ip with advanced filter-
ing from usability testing. In: VizSEC ’06: Proceedings of the 3rd
International Workshop on Visualization for Computer Security,
pp. 63–64. ACM, New York, NY, USA (2006)

123


	Visualization-based policy analysis for SELinux:  framework and user study
	Abstract 
	1 Introduction
	2 Preliminaries
	2.1 SELinux overview
	2.1.1 SELinux type characteristics
	2.1.2 SELinux policy security goals

	2.2 Trusted computing base (TCB)
	2.3 Information flow model

	3 Framework overview: visualization-based policy analysis
	3.1 Policy visualization
	3.1.1 Semantic substrates
	3.1.2 Adjacency matrix


	4 Security policy querying
	4.1 Query classification
	4.2 Basic query formulation
	4.2.1 Join query construction

	4.3 Query execution

	5 Case study with SELinux policies
	5.1 Policy visualization analysis tool (PVA)
	5.2 Policy graph
	5.3 Policy query and violation detection

	6 User study
	6.1 Participant enrollment and general feedback
	6.2 User study preparation
	6.3 User study procedures and data collection
	6.4 User study results
	6.5 Lessons learned from user study

	7 Related work
	8 Conclusion
	Acknowledgments
	References


