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Abstract—Developing a remote exploit is not easy. It requires
a comprehensive understanding of a vulnerability and delicate
techniques to bypass defense mechanisms. As a result, attackers
may prefer to reuse an existing exploit and make necessary
changes over developing a new exploit from scratch. One such
adaptation is the replacement of the original shellcode (i.e., the
attacker-injected code that is executed as the final step of the
exploit) in the original exploit with a replacement shellcode,
resulting in a modified exploit that carries out the actions desired
by the attacker as opposed to the original exploit author. We call
this a shellcode transplant.

Current automated shellcode placement methods are insuffi-
cient because they over-constrain the replacement shellcode, and
so cannot be used to achieve shellcode transplant. For example,
these systems consider the shellcode as an integrated memory
chunk, and require that the execution path of the modified exploit
must be same as the original one. To resolve these issues, we
present ShellSwap, a system that uses symbolic tracing, with a
combination of shellcode layout remediation and path kneading to
achieve shellcode transplant. We evaluated the ShellSwap system
on a combination of 20 exploits and 5 pieces of shellcode that are
independently developed and different from the original exploit.
Among the 100 test cases, our system successfully generated
88% of the exploits.

I. INTRODUCTION

Remote exploits are extremely dangerous. With the help

of remote exploits against a piece of software running on

a victim computer, an attacker can install backdoors and

exfiltrate sensitive information without physical access to the

compromised system, leading to real-world impacts on the

finances and reputation of the victim.

However, developing a remote exploit is not easy. A

comprehensive understanding of the vulnerability is a must,

and complex techniques to bypass defenses on the remote

system are necessary. When possible, rather than developing

a new exploit from scratch, attackers prefer to reuse existing

exploits in their attacks, making necessary changes to adapt

these exploits to new environments. One such adaptation is

the replacement of the original shellcode (i.e., the attacker-

injected code that is executed as the final step of the exploit)

in the original exploit with a replacement shellcode, resulting

in a modified exploit that carries out the actions desired by

the attacker as opposed to the original exploit author. We

call this a shellcode transplant. Shellcode transplanting has

many applications, including reversing command and control

protocols, understanding captured exploits, and replaying

attacks. Thus, this capability is very helpful in situations ranging

from rapid cyber-response (i.e., quick analysis of and response

to 0-day attacks) and adversarial scenarios (like cyber-security

Capture-The-Flag competitions or cyber warfare in the real

world). Unfortunately, current techniques to transplant shellcode

generally require an analyst to have a decent understanding

of how the original exploit interacts with the program, what

vulnerability it triggers, and how it bypasses deployed exploit

mitigations. As a result, the analyst must put a lot of effort

into development and debugging, which negates much of the

advantage of shellcode transplanting.

In investigating this problem, we identified three main

challenges to tackling the shellcode transplant problem. First,

it is very difficult to separate the shellcode from the rest of an

exploit, as there is generally no clear boundary separating

one from the other. Second, as an exploit’s shellcode is

commonly constructed through non-trivial data transformations,

even if the bytes representing the original shellcode could

be separated from the exploit, rewriting these bytes to a

replacement shellcode would be non-trivial. Third, the shellcode

and the remainder of the content in an exploit can be mutually

dependent on each other (e.g., a field in the exploit payload

may dictate the size of the embedded shellcode). Such relations

can pose potentially complex constraints on any replacement

shellcode that might be transplanted. When those constraints

are violated by replacement shellcode, it is challenging to

modify the exploit and/or the replacement shellcode in order

for the modified exploit to function properly.

Previous work in the field of automated exploit generation

generates exploits by constraining the memory bytes in each

attacker-controlled buffer to the target shellcode. They enumer-

ate all possible offsets in every attacker-controlled buffer until

a solution is found [12, 17]. Such methods are insufficient.

In the worst case, when attempting to compensate for the

case of conflicting constraints on the replacement shellcode,

these methods degenerate to a symbolic exploration of the

program, which generally ends in a path explosion problem or

is hampered by the inability of the symbolic execution engine

to efficiently reverse complex data transformations. In fact, as

we show in our evaluation, less than a third of the original

exploits in our dataset can be modified by existing techniques.

In this paper, we present ShellSwap, an automated system

that addresses the shellcode transplant problem. ShellSwap

takes an existing exploit and a user-specified replacement

shellcode as input and produces a modified exploit that



targets the same vulnerability as the original exploit does

but executes the replacement shellcode after exploitation.

ShellSwap tackles the challenges discussed above with a

mix of symbolic execution and static analysis techniques,

applying novel techniques to identify the original shellcode,

recover the data transformation performed on it, and resolve

any conflicts introduced by the transplant of the replacement

shellcode. By utilizing information obtained from the original

exploit and creatively transforming the replacement shellcode,

ShellSwap rarely degrades to a pure symbolic exploration,

and is thus more efficient and effective compared to previous

solutions.Additionally, the use of carefully-designed systematic

approaches enables ShellSwap to transplant more shellcode

variants. In our experiment, ShellSwap successfully generates

new exploits for 88% of all cases, which is almost three times

the success rate of prior techniques.

To the best of our knowledge, ShellSwap is the first

automated system that modifies exploits based on shellcode

provided by analysts. In terms of offense, ShellSwap greatly

reduces the overhead in attack reflection, which enables prompt

responses to security incidents like 0-day attacks, especially

in a time-constrained, competitive scenario such as a hacking

competition or cyber warfare. ShellSwap also makes it possible

for entities to stockpile exploits in bulk, and tailor them to

specific mission parameters before they are deployed at a later

time. As organizations such as the National Security Agency are

commonly known to be stockpiling caches of vulnerabilities,

such a capability can greatly reduce the overhead in using

weapons from this cache. ShellSwap is also helpful in defense,

where it can be used to debug exploits discovered in the

wild (i.e. by transplanting a piece of shellcode that is benign

or implements monitoring and reporting functionality) and

rediscover vulnerabilities being exploited.

Specifically, our paper makes the following contributions:

• We design the ShellSwap system, which is the first end-

to-end system that can modify an observed exploit and

replace the original shellcode in it with an arbitrary re-

placement shellcode. Our system shows that the automatic

exploit reuse is possible: even a person who has little

understandings about security vulnerabilities can retrofit

an exploit for their custom use-case.

• We propose novel, systematic approaches to utilize in-

formation from the original exploit to prevent ShellSwap

from degenerating to inefficient symbolic exploration, and

revise the replacement shellcode without changing its

semantics to fit constraints implicit to the original exploit.

Those approaches are essential to the performance of

ShellSwap.

• We evaluate our system on 100 cases — 20 original

exploits, each with 5 different pieces of shellcode. Our

system successfully generates modified exploits in 88% of

our test set, and all new exploits work as expected. We

also compare our system with the previous state of the art,

and we find that previous methods only work for 31% of

our test set. The fact that ShellSwap exhibits a success rate

almost triple that of the previous solution implies that the

impact of the challenges inherent in shellcode transplant

were under-estimated, and that future work targeting this

problem will be beneficial.

II. OVERVIEW

ShellSwap takes, as an input, a vulnerable program, the

original exploit that had been observed being launched against

this program, and a replacement shellcode that the original

shellcode in the original exploit should be replaced with. Given

these inputs, it uses a combination of symbolic execution and

static analysis to produce a modified exploit that, when launched

against the vulnerable program, causes the replacement shell-

code to be executed.

Our intuition for solving the shellcode transplant problem

comes from the observation that a successful control flow

hijacking exploit consists of two phases: before the hijack,

where the program state is carefully set up to enable the

hijack, and after the hijack, when injected shellcode carries

out attacker-specified actions. We call the program state after

the first phase the exploitable state, and we call the instruction

sequence that the program executes until the exploitable state

the exploit path. An input that makes the program execute the

same path as the original exploit does will lead the program

to an exploitable state. Therefore, if we find an input that

executes the instructions of the original exploit path in the first

phase and the new shellcode in the second phase, that input

represents the modified exploit.

Given these inputs, it proceeds through a number of steps,

as diagrammed in Figure 1. The steps for generating the new

exploit are as follows:

Symbolic Tracing. The path generator replays the exploit

in an isolated environment and records the executed

instructions. The output of the path generator is a sequence

of instruction addresses, which we call the dynamic exploit

path.

The path generator passes the dynamic exploit path to the

symbolic tracing engine. Then tracer sets the input from

the exploit as a symbolic value and starts symbolically

executing the program. At every step of this execution,

the tracer checks if the current program state violates

a security policy. There are two reasons for this: a) we

want to double check that the exploit succeeds, and b) we

need to get the end of the normal execution and the start

of malicious computation, where the exploit diverts the

control flow of the program to the shellcode. When the

tracer detects that the security policy has been violated,

it considers the trace complete and the exploitable state

reached.

The tracing engine records the path constraints introduced

by the program on the exploit input in order to reach

the exploitable state, and the memory contents of the

exploitable state itself. These will be used in the next

step to surmount challenges associated with shellcode

transplanting.

Shellcode Transplant. Shellcode transplant is the critical step

in the ShellSwap system. It takes the exploitable state, the
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Fig. 1: The architecture of the ShellSwap system.

path constraints, and the replacement shellcode as input,

and outputs a modified exploit that takes advantage of

the vulnerability and executes the replacement shellcode.

After this step, the system will output either the modified

exploit or an error indicating that a modified exploit could

not be found.

These steps are further described in Section III (for Symbolic

Tracing) and Section IV (for Shellcode Transplant).

ShellSwap focuses on exploits against control-flow hijack-

ing vulnerabilities, which are a type of software bug that

allows an attacker to alter a program’s control flow and

execute arbitrary code (specifically, the shellcode). Control-

flow hijacking vulnerabilities have been considered as the most

serious vulnerabilities, since the attacker can take control of

the vulnerable system. Unfortunately, control-flow hijacking

vulnerabilities are the most prevalent class of vulnerabilities

in the real world: over the past 18 years, 30.6% of reports in

the Common Vulnerabilities and Exposures database represent

control-flow hijacking vulnerabilities [15]. Thus, while the

ability to reason about other types of exploits would be

interesting, we leave the exploration of this to future work.

A. Motivating Example

To better communicate the concept of shellcode transplant

and demonstrate the challenges inherent to it, we provide a

motivating example. We first introduce a vulnerable program

and an original exploit, and then discuss the challenges posed

by two different instances of replacement shellcode.

1) Vulnerable program: Consider a vulnerable program with

source code shown in Listing 1, where the program receives a

string terminated by a newline, checks the first character and

calculates the length of the string. Note that the source code is

for clarity and simplicity; our system runs on binary program

and does not require source code.

1 int example(){

2 int len = 0;

3 char string[20];

4 int i;

5 if (receive_delim(0, string, 50, '\n') != 0)

6 return -1;

7 if(string[0] == '^')

8 _terminate(0);

9 for(i = 0; string[i] != '\0'; i++)

10 len++;

11 return len;

12 }

Listing 1: Motivating Example.
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Fig. 2: The stack layout of the example function.

This program has a control-flow hijacking vulnerability in the

processing of the received input. The string variable is a 20-

byte buffer defined at line 3. However, the string received from

user input can have up to 50 characters, which will overflow

the buffer string and eventually overwrite the return address

stored on the stack if the provided string is long enough.

Figure 2 shows the stack layout of the example function.

The saved return address (shown as saved %eip) is 36 bytes

above the beginning of buffer string. This implies that if

the received input has more than 36 characters, the input will

overwrite the saved return address and change the control flow

of the program when function example returns.

1 shellcode = "\x31\xc0\x40\x40\x89\x45\xdc"

2 exploit = shellcode + "\x90" * (36 - len(

shellcode)) + "\x50\xaf\xaa\xba\n"

Listing 2: The original exploit with shellcode.

2) Original exploit: Listing 2 shows the original exploit for

the running example. The shellcode starts at the beginning

of the exploit, followed by padding and the address with

which to overwrite the return address. When the vulnerable

program executes with the original exploit, the return address

for function example will be changed to 0xbaaaaf50, which

points to the beginning of buffer string, and when function

example returns, the control flow will be redirected to the

shellcode.



B. Challenges

To demonstrate the challenges inherent in the shellcode

transplant problem, we first consider a naive approach: if

we find the location of the old shellcode in the original

exploit, we could generate a new exploit by replacing, byte

by byte, the old shellcode with the new one. We call this

the shellcode byte-replacement approach. However, this naive

approach assumes two things, that the shellcode stays in its

original form throughout execution and that the replacement

shellcode is the same size as the original shellcode. As we

discussed previously, both of these assumptions are too strict

for real-world use cases.

For example, consider the following replacement shellcode

for the original exploit in our motivating example:

1 xor %esi,%esi 31 f6

2 lea 0x1(%esi),%ebx 8d 5e 01

3 lea 0x8(%esi),%edx 8d 56 08

4 push 0xaaaaaaaa ff 35 aa aa aa aa

5 push $0xdddddddd 68 dd dd dd dd

6 mov %esp,%ecx 89 e1

7 lea 0x2(%esi),%eax 8d 46 02

8 int $0x80 cd 80

Listing 3: The disassembly of the replacement shellcode

shellcode1.

If we apply the shellcode byte-replacement method, the

modified exploit be:

1 shellcode = "\x31\xf6\x8d\x5e\x01\x8d\x56\x08\

xff\x35\xaa\xaa\xaa\xaa\x68\xdd\xdd\xdd\xdd\

x89\xe1\x8d\x46\x02\xcd\x80"

2 exploit = shellcode + "\x90" * (36 - len(

shellcode)) + "\x50\xaf\xaa\xba\n"

Listing 4: The modified exploit for shellcode1 using the

shellcode replacement approach.

However, the modified exploit will not work when applied to

our motivating example. Figure 3a shows the stack layout before

function example starts. Besides saved registers, there are

two variables between string and the saved %eip. When the

program receives an input, the resulting stack layout is shown

in Figure 3b. However, control is not immediately transferred

to the shellcode. The program continues, and because variable

len is updated before returning, the value at this address

changes. By the time the function transfers control flow to

the shellcode, the program changes the 20th through the 28th

bytes of the replacement shellcode, as shown in Figure 3c. In

our example, this represents unexpected modification to the

replacement shellcode, rendering it nonfunctional.

In some cases, previous work is, using very resource-

intensive techniques, capable of re-finding the vulnerability

and re-creating an exploit, but these systems all suffer from

extreme scalability issues because they approach vulnerability

detection as a search problem. If we do not want to re-

execute these resource-expensive systems to re-identify and

re-exploit vulnerabilities, a new approach is needed. To this end,

we identified two main categories of challenges in shellcode

transplanting: one dealing with the layout of memory at the

time the vulnerability is triggered, and the other having to

do with the actions taken in the path of execution before the

vulnerability is triggered.

1) Memory conflicts: Previous work [12, 17] places shell-

code in memory by querying a constraint solver to solve

the constraints generated in the Symbolic Tracing step and

concretizing a region of memory to be equal to the desired

shellcode. However, as is the case in our naive byte-replacement

approach, this is not always possible: often, when dealing with

fine-tuned exploits, there is simply not enough symbolic data

in the state to concretize to shellcode [29].

For example, recall the shellcode in Listing 4 in the context

of our motivating example. This piece of shellcode is 26 bytes

long, which should have fit into the 50 bytes of user input.

However, the 20th through the 28th byte are overwritten, and

the 36th through 40th byte must be set to the address of the

shellcode (to redirect control flow). This leaves three symbolic

regions: a 20-byte one at the beginning of the buffer, an 8-byte

one between the ret and len variables and the saved return

address, and the 10 bytes after the saved return address. None

of these regions are big enough to place this shellcode, causing

a memory conflict for the shellcode transplanting process.

2) Path conflicts: To drive program execution to the ex-

ploited state, the content of the modified exploit must satisfy

the path constraints recovered from the Symbolic Tracing step.

However, by requiring the replacement shellcode to be in the

memory of the exploitation state, we add new constraints

(“shellcode constraints”) on the exploit input. These new

conditions may be conflict with those generated along the

path. We call such conflict the path conflict. In the presence

of such a conflict, if we locate the replacement shellcode in

the exploitation state (and discard the path constraints that

conflict with this), the exploit path will change, and the new

program state resulting from the changed path may not trigger

the vulnerability.

For example, consider the replacement shellcode in Listing 5

in the context of the motivating example.

1 push $0x0 6a 00

2 push $0xa65 68 65 0a 00 00

3 push $0x646f636c 68 6c 63 6f 64

4 push $0x6c656873 68 73 68 65 6c

5 mov $0x2,%eax b8 02 00 00 00

6 mov $0x1,%ebx bb 01 00 00 00

7 mov %esp,%ecx 89 e1

8 mov $0xa,%edx ba 0a 00 00 00

9 lea 0x10(%esp),%esi 8d 74 24 10

10 int $0x80 cd 80

Listing 5: The disassembly of the replacement shellcode.

shellcode2.

When the running example executes with an input string,

the for loop body before the return increments i until

string[i] is a null byte. For the original exploit, the loop

will repeat for 40 times (the length of the exploit string),

meaning that the path constraints will mandate that the first 40

bytes of string are not null. For the replacement shellcode,

however, if we locate the new shellcode at the beginning of
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Fig. 3: The stack layout of function example at runtime.

string, the loop will only iterate once, because the second

byte of the shellcode is null. This creates a contradiction

between the path constraints and the shellcode constraints.

3) Surmounting the challenges: The intelligent reader can

certainly envision approaches to achieve shellcode transplanting

in the motivating example. However, this example is just 12

lines of code. One can see that, with bigger examples and in

the general case, these challenges can be quite complicated to

surmount.

In the rest of the paper, we will discuss how to identify

conflicts while transplanting the shellcode and how to satisfy

both memory and path conflicts to successfully transplant

shellcode in a wide variety of exploits.

III. SYMBOLIC TRACING

Essentially, ShellSwap separates the entire execution of the

original exploit into two phases: before the control-flow hijack

and after the control-flow hijack. The Symbolic Tracing step

analyzes the former. The goal of this step is to generate the

exploitable state of the program and record the path constraints

that are induced by conditional branches that are encountered

on the path. This involves two main considerations.

First, we must determine when the control-flow hijack occurs.

We do this by leveraging the concept of security policies,

which has been thoroughly explored by researchers [10, 16,

18, 21, 32]. In our work, we use the well-studied taint-based

enforceable security policy [26, 32]. This policy determines

whether or not a program state is safe by checking the

instruction being executed. If the instruction directly is tainted

by remote input, then the program state is deemed unsafe and

the path is terminated.

Second, we must determine how to perform the tracing, as

there are several possible techniques that might be used here.

For example, we could use dynamic taint analysis to identify

when executed instructions are tainted by input data. While

this would be relatively fast, taint analysis is not sufficient.

Although it can identify violations to our security policy caused

by tainted input, it cannot recover and track path constraints.

Thus, in our system, we apply concolic execution to trace the

path that the exploit runs on the program. We ensure tracing

accuracy in two ways: we record a dynamic trace of the exploit

process (and require that our symbolic trace conform to the

same instructions), and we pre-constrain the symbolic data to

be equal to the original exploit. The former avoids the path

explosion inherent in concolic execution exploration (because

we only care about the branch that the exploit chooses), and the

latter greatly simplifies the job of the symbolic constraint solver

during tracing (by providing it with a pre-determined solution).

This method is similar to the pre-constraint tracing and the

input pre-constraining approach proposed by Driller [30] (and,

in fact, part of the implementation derives off of Driller’s

tracing module).

The trace-directed symbolic execution takes a program and

an original exploit and produces path constraints and the

exploitable state. The exploitable state includes the symbolic

value of registers and memory at the moment that the program

starts to execute the shellcode. After this step completes,

the pre-constraints introduced in the beginning are removed,

making it possible to constrain some of the memory in the

exploitable state to contain values representing, for example,

the replacement shellcode. The remaining path constraints

guarantee that any satisfying input will make the program to

execute the same execution trace and triggers the vulnerability.

IV. SHELLCODE TRANSPLANT

After the exploitable state and the path constraints associated

with it have been recovered, ShellSwap can attempt to re-

constrain the shellcode to be equal to the replacement shellcode

by adding shellcode constraints. However, as discussed in

Section II, the shellcode constraints may conflict with the

path constraints. Previous work [12, 17] addresses this issue by

trying other shellcode locations, but even the simple motivating

example in Section II is too complicated for this to work.

The Shellcode Transplant steps attempts to resolve these

conflicts. If it can do so, the modified exploit, containing the

replacement shellcode, is produced. If it fails, it returns an

error indicating that the exploit could not be found.

The step proceeds in several phases, in a loop, as shown in

Figure 4. First, in the Preprocessing phase, ShellSwap identifies

possible memory locations into which replacement shellcode



(or pieces of it) can be placed. Next, in the Layout Remediation

phase, it attempts to remedy memory conflicts (as discussed

in Section II-B) and fit the replacement shellcode into the

identified memory locations, performing semantics-preserving

modifications (such as code splitting) if necessary. If this fails

due to a resulting conflict with the path constraints (a path

conflict, as discussed in Section II-B), ShellSwap enters the

Path Kneading phase and attempts to identify alternate paths

that resolve these conflicts while still triggering the vulnerability.

If such a path can be found, its constraints replace the path

constraints, and the system repeats from the preprocessing

phase.

If ShellSwap encounters a situation where neither the

memory conflicts nor the path conflicts can be remedied, it

triggers the Two-Stage Fallback and attempts to repeat the

Shellcode Transplant stage with a fallback, two-stage shellcode.

A. Preprocessing

Before the system tries to locate the new shellcode, it scans

the memory in the exploitable state to identify symbolic buffers.

A symbolic buffer is a contiguous memory where all bytes

are symbolic. To find symbolic buffers, our system iterates the

bytes of the memory, marking each contiguous region. After

finding all symbolic buffers, we sort the buffers by the length

and the number of symbolic input variables involved in each

buffer. Buffers with bigger length and more symbolic values

has more varieties of concrete values, and thus are more likely

to be able to hold the replacement shellcode.

B. Layout Remediation

Given symbolic buffers from the previous phase, the system

attempts to fit the replacement shellcode into the exploitable

program state. As an innovation over prior work, ShellSwap

does not consider a piece of shellcode as an integrated memory

chunk. Instead, we model the new shellcode as a sequence

of instructions. It is not necessary to keep these instructions

contiguous; we could insert jmp instructions to “hop” from

one shellcode instruction in one symbolic buffer to another

instruction in another buffer. Thus, we attempt to fit pieces

of the shellcode (plus any necessary jump instructions) into

previously-identified symbolic buffers.

Algorithm 1 and Algorithm 2 shows the algorithms for

Layout Remediation. The system invokes function Locate,

and function Locate calls out to function Hop when needed.

Both functions take five arguments as input: SH ,ST , I, C, i, a,

where SH is the shellcode, ST is the exploitable state, I is

the symbolic buffers, C is the set of constraints for ST , i is

an index into the not-yet-written bytes of the replacement

shellcode, and a is the memory address being currently

considered by the algorithm.

We use the motivating example to demonstrate how the

algorithm works. As mentioned in Section II-B, there will

be three symbolic buffers in this example. Suppose the

ShellSwap system tries to fit the shellcode from Listing 3

to the stack of the exploitable state of the motivating example.

It calls Locate with i = 0 and a = &string, initially trying

Input :
SH : The new shellcode
ST : The current exploitable program state. ST .mem[j] means the

memory at j in the state ST
I: The symbolic buffers generated by preprocessing
C: The constraints set
i: The index of the instruction of the shellcode
a: The start address that we plan to put SH [i]

Output :
E: A new exploit or Not Found

1 if i > len(SH ) then
// We have successfully put the entire piece

of shellcode to the exploitable state.

2 E ← Solve(C);
3 return E;
4 end
5 else if i < 0 then

// We cannot successfully put the entire piece

of shellcode to the exploitable state if we

put SH[i] at a.
6 return Not Found;
7 end
8 else
9 if I has enough space after a then

// Construct the new constraint asserting

the memory at a concretize to the i-th

byte of the replacement shellcode.

10 c← (ST.mem[a : a+ len(SH[i])] == SH[i]);
11 C′

← C + c;
12 if Solve(C’) has solution then
13 ST ′

← a new state with
ST.mem[a : a+ len(SH[i])] = SH[i];

14 a′ ← Next(I, a+ len(SH[i]));
15 return Locate(SH, ST ′, I, C′, i+ 1, a′);
16 end
17 else

// We cannot put SH[i] at a. Instead, we

need to find another location for

SH[i] and hop to the location.

18 if Hop(SH, ST, I, C, i, a) == Not Found then
19 return Not Found;
20 end
21 else
22 ST ′, a′, C′

← Hop(SH, ST, I, C, i, a);
23 return Locate(SH, ST ′, I, C′, i+ 1, a′);
24 end
25 end
26 end
27 else
28 return Not Found
29 end
30 end

Algorithm 1: The algorithm of the Locate function.

to put the first instruction of the replacement shellcode at the

beginning of the buffer string.

The layout remediation process is shown in Figure 5. As

the first 6 instructions of the replacement shellcode satisfy the

constraints in memory, the process will continue adding new

instructions until the 7th instruction (Figure 5b). At this point,

the system fails to add the 7th instruction (because len is in

the way), so it calls function Hop, trying to jump over len

and place the 7th instruction to into the next symbolic buffer

(Figure 5c). In function Hop, it successfully finds a location

for the 7th instruction. However, the jmp instruction cannot

fit after the first 6 instructions (Figure 5d, so we roll back and

call Hop to re-locate the 6th instruction (Figure 5e). Since the

jmp instruction still covers len, this rollback occurs again,
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Fig. 4: The phases of the Shellcode Transplant step.

Input :
SH: The new shellcode
ST : The current exploitable program state. ST.mem[j] means the

memory at j in the state ST
I: The symbolic buffers generated by preprocessing
C: The constraints set
i: The index of the instruction of the shellcode. SH[i] means the bytes

for the i-th instruction of the shellcode SH .
a: The start address that we plan to put SH[i]

Output :
ST ′: The updated exploitable program state, with the jump instruction

and SH[i] in the memory.
C′: The updated constraints set
a′: The start address for the next instruction

1 if i < 0 then
// We cannot successfully hop SH[i].

2 return Not Found;
3 end
4 else

// find an address to put SH[i]
5 a′ ← None;
6 at ← Next(I, a+ lenjmp));
7 while at is not None do
8 c← (ST.mem[at : at + len(SH[i])] == SH[i]);
9 C′

← C + c;
10 if Solve(C’) has solution then

// SH[i] can be put at ST.mem[at]
11 cjmp ← jump instruction constraint;
12 C′′

← C′ + cjmp;
13 if Solve(C′′) has solution then

// The jump instruction can be put

at ST.mem[a]
14 ST ′

← a new state with SH[i] and jump instruction;
15 a′ ← Next(I, at + len(SH[i]));
16 return ST ′, a′, C′;
17 end
18 end
19 else
20 at ← Next(I, at));
21 end
22 end

// We cannot hop to an address with SH[i]
after address a. Then we roll back and hop

to the previous instruction.

23 ST ′, a′, C′
← Rollback(SH, ST, C, I, a);

24 return Hop(SH, ST ′, I, C′, i− 1, a′);
25 end

Algorithm 2: The algorithm for the Hop function.

until the 5th instruction ends up relocated, and a jmp inserted

after the 4th instruction to the 5th instruction. In the end, this

is repeated until the full shellcode is placed in memory, split

into three parts as shown in Figure 5f.

C. Path Kneading

If the system cannot find a new exploit for the new shellcode

using the exploitable state of the original exploit, we need to

diagnose the cause of conflict and tweak the path to generate

new exploitable states and new path constraints. To diagnose

the cause of conflict, we first identify the conflicting path

constraints and then check which instructions generated them.

Since shellcode is placed to the exploitable state instruction

by instruction, we can retrieve the smallest set of shellcode

constraints that cause a path conflict as soon as Locate

terminates unsuccessfully. Let c be the constraint for locating

the current instruction, and let C be the set of path constraints

set of the current state. We already know that c and C are

conflicted (otherwise, a location for the last instruction would

have been found), which implies that c ∧ C = False. To

understand the cause of the conflict, we find the smallest set

of path constraints S such that: S ⊆ C, such that:

c ∧ S = False and c ∧ (S − C) = True .

After finding the conflict subset, ShellSwap identifies the

source of each constraint in this subset by checking the

execution history for when it was introduced. If the conflicting

constraint was introduced by condition branch, ShellSwap

will tweak the path to avoid the path constraints in the

conflict subset. The intuition for this is as follows: if the

shellcode constraint contradicts a path constraint, then the

shellcode constraint does not contradict the negation of that

path constraint. For path constraints created by conditional

branches, our idea is to negate the conflict path constraints by

selecting the other branch in the program. In this way, if the

program executes along the path with the opposite branch, the

new path constraints will contain the negation of the previously-

conflicting path constraint, and the new path constraints will

not conflict with the shellcode constraint c.
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Fig. 5: The layout remediation process for the motivating example with shellcode1.

For example, consider the motivating example and the

replacement shellcode in Listing 5. As we described in

Section II-B, we encounter a path conflict because the for

loop in our example, which runs 40 times for the original

shellcode, only runs once for the replacement shellcode. Let E

be the exploit, and let Ei be the i-th byte in E. The symbolic

value of string in the exploitable state is equal to:

Concatenate(E0, E1,... , E18, E40)

which means the string from the 0th to the 40th byte of the

input. In this case, the path constraints include the following:

E0 6= ’\x00’ ∧ E1 6= ’\x00’ ∧ . . .∧ E40 6= ’\x00’

However, because the second character of the replacement

shellcode is ’\x00’, the shellcode constraints conflict with

the path constraints1.

Suppose that ShellSwap identifies this situation while trying

to place the first instruction of the replacement shellcode at

1The inquisitive reader might question why the part of the shellcode with
the null byte could not be written after the return address to bypass this loop.
However, a closer look at the replacement shellcode would reveal null bytes
in many other locations as well.

the beginning of string. After analyzing the conflicting

constraint subset, we know that the conflict stems from the

path constraint E1 6= ’\x00’, and this constraint is created

at address 0x080482F3, shown in Figure 6. Specifically, the

conflict constraint occurs at the second iteration of the for loop.

To generate a new path, we negate the conditional jump

associated with the conflicting path constraint by modifying the

trace to force an exit from the loop after the second iteration.

However, after this change, we need to merge the diversion back

to the original path. We accomplish this by leveraging static

analysis. First, we find the function containing the divergence

point, and build a control flow graph for the specific function.

Next, we statically find the descendants of the diverted node

and see if any of the descendants appear in the original path

after the negated node. For each satisfying descendant, we

attempt to construct a new path that is identical to the original

path until the negated node, followed by the detected detour

back to the descendent node that appears in the original path,

and then ending with the postfix from the descendant node to

the end of the original path.

Figure 7 shows the generation of a new path. Suppose node

nc is negated to nc′ , and node nd is the descendant of node



080482E6 mov     eax, [ebp+var_24]

080482E9 movsx   eax, [ebp+eax+buf]

080482EE cmp     eax, 0

080482F3 jz      loc_8

080482F9 mov     eax, [ebp+len]

080482FC add     eax, 1

08048301 mov     [ebp+len], eax

08048304 mov     eax, [ebp+var_24]

08048307 add     eax, 1

0804830C mov     [ebp+var_24], eax

0804830F jmp     loc_80482E6

08048314 mov     eax, [ebp+len]

08048317 mov     [ebp+ret], eax

…	

…	

Fig. 6: Part of the control flow graph for the motivating example.

nc′ . For the new path, the basic blocks do not change before

nc′ or after nd. In between, we insert an intraprocedural path

from nc′ to nd G(nc′ , nd), which can be generated using the

control graph of the function. In the best case, the question is

equivalent to finding a path between two nodes in a directed

graph. However, it is possible that there is no such path to

rejoin the original path, or that the problem reduces to symbolic

exploration (if the divergence is too big). In this case, ShellSwap

falls back on the Two-Stage Fallback.

In the motivating example, as simply exiting the loop already

rejoins the original path, the detour back to the path is trivial: it

is the direct jump to the return site of the example function.

After constructing the new path, the ShellSwap system

generates the new exploitable program state and a new set of

path constraints using the Symbolic Tracing step. Meanwhile,

it also checks if the new program state is still exploitable. If

the new program state is exploitable, our system starts again

from the preprocessing phase to fit the replacement shellcode

into the new exploitable program state. Otherwise, the system

will attempt to construct the other paths and generate the other

program states, falling back on the Two-Stage Fallback if it is

unable to do so.

D. Two-Stage Fallback

If ShellSwap is unable to overcome the memory and path

conflicts and fit the replacement shellcode into the exploitable

state, then it falls back on pre-defined a two-stage shellcode

instead of the provided replacement shellcode. The motivation

of this fallback is straightforward: if the provided shellcode

cannot fit the exploitable state, even after Path Kneading, we

try a smaller first-stage replacement shellcode that can then

load an arbitrary second-stage shellcode.

There are several options for a first-stage shellcode. One

option is a shellcode that reads shell commands from the socket

and executes them. Another, to bypass modern defenses such

as Data Execution Protection, could read a Return Oriented

Programing payload over the stack and initiates a return. For

our prototype, we implemented a stack-based shellcode-loading

first-stage payload that reads a second-stage payload onto the

stack and jumps into it. While this is not immune from DEP

techniques, it is only meant as a proof of concept for our

prototype.

Consider the motivating example. The program receives input

by using the DECREE syscall receive() (more information

on DECREE is provided in Section VI), which is a system

call similar to recv() in Unix/Linux. If the new shellcode

is longer than 50 bytes, we cannot generate a new exploit

because the program is able to receive 50 bytes at most. In this

case, we could consider the following template for generating

a two-stage shellcode:

1 xor %eax,%eax 31 c0

2 inc %eax 40

3 inc %eax 40

4 inc %eax 40

5 xor %ebx,%ebx 31 db

6 inc %ebx 43

7 mov %esp,%ecx 89 e1 ; %ecx: &dst

8 mov _ ,%edx 8b _ ; %edx: len

9 mov _,%esi 8b _ ; %esi: &ret

10 int $0x80 cd 80

11 jmp *%esp ff e4

Listing 6: The disassembly of the template for a two-stage

shellcode.

This first-stage shellcode reads a string, stores at the bottom

of the stack (%esp) and jumps to the received string. There

are two blanks in the template – we need to fill the receiving

length and the address of return value for register %edx and

%esi, respectively. After completing the template, our system

will restart the layout remediation process with the two-stage

shellcode as the replacement shellcode. If the system cannot

find a modified exploit using the Two-Stage Fallback, it returns

an error indicating that no modified exploit could be found.
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Fig. 7: The generation of a new path. G(x, y) means a path between node x and y found by static analysis.

Although the two-stage shellcode helps to solve the shellcode

transplant problem by increasing the situations in which

ShellSwap can function, we consider this purely as a fallback.

This is because two-stage exploits may be less robust than

the other exploits, as they assume that the victim machine

can receive extra bytes from the attacker. This assumption

does not always hold. For instance, the victim machine may

be protected by other mechanisms which block the message,

such as an external firewall, or the network connection over

which communication happens might already be closed when

the vulnerability triggers. Therefore, our system prioritizes the

conflict resolution approaches, and it will not trigger the Two-

Stage Fallback when the previous layout remediation process

fails.

V. IMPLEMENTATION

ShellSwap is implemented on top of angr [29], a binary

analysis platform. We rely on angr’s symbolic tracing com-

ponent [3], which also leverages the QEMU emulator [1] for

exploit replay and symbolic tracing. The core of our system,

consists of about 2000 lines of Python code.

A. Finding Infeasible Constraint Sets

Finding a minimal subset of infeasible constraints, which

is an essential part of Path Kneading, is not a trivial problem.

The underlying constraint solver Z3, which is used in angr

(and thus in ShellSwap), provides an unsat_core function to

retrieve the smallest subset of an unsatisfiable set of constraints.

However, in our experiment, we found that unsat_core can

be very time consuming, and sometimes even lead to crashes

of Z3. Since we weren’t able to pinpoint the root cause of

the problem, we further implement a constraint set slimming

method (as described below) to resort to in case unsat_core

fails.

The constraint set slimming is a divide-and-conquer approach.

Given a constraint set A and a constraint c that contradicts A,

constraint set slimming will try to find a subset of constraints

in A (but not the smallest subset) that still contradicts c. We

first divide A into two subsets and check if any of them is

contradictory to constraint c. If both subsets contradict c, the

final infeasible constraint set will include conflicting constraints

subsets from the two. If only one subset contradicts c, the other

subset can be safely discarded as the result will only contain

conflicting constraints from the contradictory subset. We repeat

this procedure on contradictory subsets recursively until we

find the very last contradictory subset, which either contains a

single constraint that contradicts c, or several constraints that

none of which contradicts c if considered individually. The

union of all conflicting subsets of constraints represent the

slimmed set of constraints.

B. Optimizations

Much of the execution in symbolic tracing does not involve

symbolic data. To speed up the tracing step, ShellSwap enables

code JIT’ing (through the use of Unicorn Engine [24]) by

default, which allows instructions in the original exploit to be

executed natively instead of being emulated. While it greatly

speed up symbolic tracing, we find that this step is still the

bottleneck in ShellSwap: as discussed in Section VI, an average

of 95% of execution time is spent in this step.

To avoid generating an entire control-flow graph in our

path kneading component, we used a fast function detection

approach to pick out the exact function for which to generate

the control flow [9].

In the course of the development of this system, we have

upstreamed many big-fixes and some improvements to angr and

its tracing module. With these fixes, we observed a 1000-times

speed improvement on some samples in our evaluation.

VI. EVALUATION

In this section, we present our evaluation of ShellSwap. We

first describe the data set, including all vulnerable programs and

exploits, used in our evaluation (Section VI-A). Then, we show

the experimental setup in Section VI-B. Next, we demonstrate

the effectiveness of our approach in Section VI-C by evaluating

both ShellSwap and a reference implementation of previous

work on 20 original exploits and 5 pieces of replacement

shellcode. There, we show the necessity of ShellSwap in

effectively transplanting shellcode. In the end, we evaluate the

efficiency of ShellSwap and display the results in Section VI-D.

A. Data Set

Our evaluation data set contains three parts: 11 vulnerable

binaries, 20 original exploits, and 5 pieces of replacement

shellcode. We present how the data set is constructed below.

1) Vulnerable binaries: We selected 11 vulnerable binaries

(see Table I) from the qualifying event as well as the final

event of DARPA Cyber Grand Challenge (CGC). These

binaries are shipped with source code, reference exploits, and

actual exploits generated by other CGC participants, making

them a perfect fit for our evaluation. All of the binaries

are standalone x86 binaries with a special set of system

calls (DECREE syscalls), roughly analogous to the Linux

system calls recv (as DECREE’s receive), send (as

DECREE’s transmit), mmap (as DECREE’s allocate),

munmap (as DECREE’s deallocate), select (as DE-

CREE’s fdwait), get_random (as DECREE’s random),

and exit (as DECREE’s _terminate). Sizes of those

binaries range from 83 KB to 18 MB. Those vulnerable

binaries cover a wide range of subtypes of control flow hijack



vulnerabilities, including stack overflow, heap overflow, integer

overflow, arbitrary memory access, improper bound checking,

etc.

2) Exploits: As the CGC provides generators for reference

exploits, we generated a few exploits for each vulnerable binary,

for a total of 20 reference exploits (as is shown in Table I). It

is worth noting that exploits (or Proofs of Vulnerability in CGC

terminology) in CGC are special in the sense that each of them

should demonstrate attacker’s ability to fully control values in

two registers: the instruction pointer and one other register. As

a result, some generated exploits do not contain any shellcode.

We manually post-processed all exploits to make sure each

one of them has a piece of shellcode to execute in the end of

the exploitation.

3) Shellcode: As shown in Table II, we collected five

instances of replacement shellcode from three different sources,

four of which are from CGC finalists (ForAllSecure and

Shellphish), and one of which is manually crafted by ourselves.

This range of replacement shellcode instances is important: with

the shellcode coming from multiple sources, we can mimic the

setting of cyber attack customization in our experiments. We

refer to these instances as S1 through S5. Therefore, with five

instances of replacement shellcode for each of the 20 original

exploits in our dataset, we have a total of 100 modified exploits

for ShellSwap to generate.

B. Experiment Setup

One of the applications of transplanting shellcode is to

automatically reflect, or ricochet, an attack coming from a

rival. In this scenario, the victim first detects an exploit coming

from the attacker. They then automatically replace the payload

(the shellcode) in the exploit and replay the modified exploit

against the attacker. We try to simulate such a scenario in our

experiment, where the attacker emits original exploits and the

victim (or replayer/reflector) replays a modified exploit with

the shellcode replaced.

1) Machines.: Our experimental setup contains two ma-

chines: one machines hosts the DARPA Experimental Cyber

Research Evaluation Environment (DECREE), and the other

runs ShellSwap. DECREE runs on a virtual machine built

using an image provided by DARPA CGC [5, 6], which offers

an isolated environment for running and testing vulnerable

programs. It is assigned 1 CPU core and 1 GB of memory on

a host machine with Intel Core i7 2.8 GHz. The ShellSwap

machine is a standalone server with Intel Xeon E5-2630 v2 as

CPU and 96 GB of memory, running Ubuntu 14.04 LTS.

2) Process.: As is shown in Figure 8, the original exploits

are pre-generated for each vulnerable binary. ShellSwap takes

as input each pair of original exploit and replacement shellcode

and attempts to generate a modified exploit. We verify the

modified exploit against the binary in DECREE box to make

sure that it works and that the replacement shellcode is executed

with intended results. For testing and verification, we modified

the utility script cb-replay-pov shipped in DECREE.

3) Reference system for comparison.: To demonstrate the

necessity of our approach in tackling the shellcode transplant

problem, we reimplemented the shellcode placement method

in the work of Cha et al. [12] in a new system on top

of angr and used it as our reference system (codenamed

SystemM). We simulate shellcode transplanting in SystemM by

first re-triggering the exploit and then re-constraining individual

symbolic blocks in memory to the replacement shellcode one by

one until the modified exploit is created. If none of the symbolic

memory blocks is sufficiently large to hold the replacement

shellcode, or constraining every symbolic memory block to

replacement shellcode leads to an unsatisfiable exploitation state

(due to path conflicts), then we deem the shellcode transplanting

as having failed.

C. Effectiveness

Table I presents the effectiveness comparison between

SystemM and ShellSwap. There is a significant difference

between the number of modified exploits the two systems

successfully generated: SystemM successfully generated 31

exploits, whereas ShellSwap successfully generated 88 exploits.

The success rate for SystemM and ShellSwap are 31% and

88%, respectively. Not surprisingly, our method generated more

new exploits than previous work.

Statistics for all modified exploits successfully generated by

SystemM and ShellSwap are shown in Table III. ShellSwap

generated 57 exploits using only Layout Remediation and 31

more by leveraging Path Kneading. For comparison, we also

extended SystemM with Layout Remediation, resulting in, as

expected, an additional 26 more exploits over the base SystemM

implementation. Only 57% of all cases are successfully replaced

with new shellcode without Path Kneading, which demonstrates

the importance of conflict identification and kneading of the

exploit path during shellcode replacement.

In addition, we evaluate the two-stage fallback on all 20

exploits: we replace the original shellcode in each exploit

with the fallback shellcode and generate new exploits2. In our

experiment, the two-stage fallback worked on 19 out of 20

exploits. This is because the fallback shellcode is shorter (19

bytes) than any instance of the replacement shellcode, and is

thus more likely to fit into buffers under attacker controls.

Meanwhile, we observe that the success rate of shellcode

transplanting varies between different instances of replacement

shellcode (see Table IV). There is an expected negative

correlation between the success rate and the length of the

replacement shellcode. For example, shellcode S4 and S5,

which are both 37 byte long, have lower success rates than

other replacement shellcode that are shorter. This fits with

our intuition that the longer a piece of shellcode is, the more

conflicts it might produce during the shellcode transplant step,

and the more difficult it will be to generate a modified exploit.

Other results are less intuitive. For instance, S5 has a lower

success rate than S4, which is the same size. We looked into

failure cases, and we found that the failure is related to the null

byte in S5. S4 does not contain any null bytes. This conforms

2We do not evaluate all five instances of shellcode since any shellcode will
work in the second stage.



Binary Size Vulnerability Type
Original

Exploits

Modified

Exploits
SystemM ShellSwap

CADET_00001 83 KB Buffer Overflow 1 5 4 5

CROMU_00001 92 KB Integer Overflow 1 5 3 5

EternalPass 18 MB Untrusted Pointer 2 10 0 8

Hug_Game 3.1 MB Improper Bounds Checking 1 5 0 2

LUNGE_00002 1.6 MB Off-by-one Error 1 5 14 5

On_Sale 125 KB Buffer Overflow 4 20 10 20

OTPSim 106 KB Improper Bounds Checking 2 10 0 10

Overflow_Parking 92 KB Integer Overflow 1 5 0 0

SQL_Slammer 102 KB Buffer Overflow 3 15 0 15

Trust_Platform_Module 89 KB Buffer Overflow 3 15 0 15

WhackJack 105 KB Buffer Overflow 1 5 0 3

Total 20 100 31 88

TABLE I: This table shows the vulnerable binaries, the types of their vulnerabilities, the numbers of original exploits of each

binary, the total number of attempted exploit modifications (one replacement shellcode per original exploit per binary), and the

number of modified exploits successfully produced by SystemM and ShellSwap.
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Fig. 8: Experiment setup.

Shellcode Length # Instruction Source

S1 26 Bytes 7 ForAllSecure

S2 29 Bytes 11 ForAllSecure

S3 22 Bytes 12 Shellphish

S4 37 Bytes 8 Shellphish

S5 37 Bytes 12 ShellSwap

TABLE II: The shellcode information.

Shellcode Layout Remediation Path Kneading

S1 12 7

S2 13 5

S3 14 5

S4 9 8

S5 9 6

Total 57 31

TABLE III: The number of the generated exploits for each

shellcode and each approach.

to the common knowledge that null bytes complicate shellcode,

which is why they are generally avoided by exploit authors:

since null bytes are so frequently used as string terminators,

Shellcode Length # Success Success Rate

S3 22 Bytes 19 95%

S1 26 Bytes 19 95%

S2 29 Bytes 18 90%

S4 37 Bytes 17 85%

S5 37 Bytes 15 75%

TABLE IV: Success rate for each instance of replacement

shellcode, sorted by length.

the existence of null bytes may negatively impact the success

of the exploit if data is moved around using something like

strcpy.

D. Efficiency

Table V shows the time cost for each instance of replacement

shellcode and each approach. The average time cost for Layout

Remediation is 19.73 seconds, while the average time cost for

Path Kneading is 9426.99 seconds. The dramatic difference

between the two is because the latter requires one or more

iterations of symbolic tracing, which, as we have previously

discussed, is an extremely time consuming process. We leave

further performance improvement as future work, and note that



Shellcode Layout Remediation Path Kneading

S1 18.85 5638.30

S2 21.05 10993.84

S3 20.38 8017.11

S4 21.01 7993.11

S5 17.36 14492.62

Average 19.73 9426.99

TABLE V: Average time cost (in seconds) for each instance

of replacement shellcode and each approach.

there are example optimizations in related work that could be

applied to this problem.

VII. DISCUSSION

ShellSwap’s results open up new possibilities for the fast

adaptation and analysis of software exploits. In this section,

we explore the implications of these results, the limitations of

the system, and the direction of our future work.

A. Ethical Concerns

ShellSwap raises the concern that it enables malicious

attackers to quickly adapt exploits against unwitting victims

on the internet. Unfortunately, such criticism can be applied to

almost all security research. Similar to known techniques such

as automatic exploit generation [7, 12] or automatic patch-based

exploit generation [11], the merit of the ShellSwap system and

its solution of the shellcode transplant problem is to show the

potential abilities of attackers and to highlight the possibility

that one can automatically modify exploits to tailor attacks to

custom requirements. Our hope is that, by showing that this is

possible, ShellSwap will motivate new research into defenses

against customized exploits.

B. Limitation

While ShellSwap makes fundamental contributions toward

the solution of the shellcode transplant problem, there is still

work left to be done. Here, we discuss specific weaknesses of

the system that could be addressed by future work.

1) Other types of vulnerabilities: Our system focuses

solely on control-flow hijack vulnerabilities, and we do not

address other vulnerability types, such as Information Leakage

and Denial of Service (DoS). To consider these types of

vulnerabilities, as well as other popular types, the shellcode

transplant problem would need to be redefined, as shellcode

is not utilized in exploits targeting these vulnerabilities. Thus,

to generalize ShellSwap, we must first define the analogous

problem in the context of a different vulnerabilities, and then

discuss possible designs to solve it.

We define the analogous problem for information leakage

vulnerabilities as the generation of a modified exploit that leaks

a different piece of data (whether a memory location, a file,

a variable in the program, etc.) than the original exploit does.

This is a complex task to accomplish: information leakage

exploits are hard to detect in the first place because monitoring

the information flow through a program is not EM-enforceable

in general. However, weaker variants such as taint tracking can

find a smaller set of information leakage vulnerabilities. For

example, evidence shows that Valgrind can detect information

leakage exploits such as the Heartbleed attack [31], given

test cases that trigger it (i.e., an exploit). Since, by definition,

ShellSwap receives such an exploit as input, a possible method

for ShellSwap to function on information leakage is to use

symbolic execution to find the correlation between the exploit

and the leaked information or its reference, and modify it

accordingly. In this case, the memory conflicts will likely not

come into play (since they are specific to placing replacement

shellcode in memory), but path conflicts will still occur, and

will need to be kneaded away, due to the modifications required

to re-target the leak. After identifying the relation, one can

come up with an exploit by solving the constraints.

We define the ricochet problem for Denial of Service

vulnerabilities as the generation of a modified exploit that

causes the same effect to the vulnerable program. Of course,

there is little modification required – if the original exploit

makes the program crash or hang at a given point, the modified

exploit should have the same effect. In this case, ShellSwap is

used purely as an exploit replaying system.

2) Exploit Replayabilty: ShellSwap assumes that the original

exploit is deterministically replayable, in the sense that the

exploit always succeeds when re-launched against the target.

However, this assumption does not always hold. For instance, a

vulnerable server may implement a challenge-response protocol

that requires the client to send messages with a nonce that

the two sides negotiated at the beginning of the session. This

nonce would change when we replay the exploit, and the exploit

would fail. Asymmetric encryption and sources of randomness

from the environment can also manifest in such failures. To

generate the modified exploit for such case, ShellSwap would

have to consider an exploit as a state machine rather than a

series static bytes, which would require fundamental extensions

of the design.

This being said, our experiments showed that most of

the exploits in our dataset are replayable, and our system

is applicable for this majority. We intend to investigate the

replaying of non-deterministic exploits in future work.

3) Modern Defense Mechanisms: Modern systems have

memory protection mechanisms such as Address Space Layout

Randomization (ASLR) and Data Execution Prevention (DEP).

However, such protection mechanisms can be bypassed by

properly-crafted exploits.

Our solution to the shellcode transplant problem is based

on an functional original exploit, which implies that this

exploit has already bypassed the required defense mechanisms.

When this is the case, ShellSwap’s replacement exploit often

bypasses these mitigation techniques as well. For example,

DEP is often bypassed through the use of Return Oriented

Programming that chains pieces of code (termed gadgets) in a

program to map an executable page (using the Linux mmap or

DECREE allocate syscalls), insert shellcode into it, and

execute it. Alternatively, the page containing the shellcode (for

example, the program stack) can simply be marked executable



by mprotect. For such exploits, ShellSwap bypasses DEP

by reusing the original exploit’s DEP bypass and replacing the

final mapped shellcode with the replacement shellcode. If the

replacement shellcode cannot be located at the same location

as the original shellcode, the final control flow transfer of the

mitigation bypass stage must be modified to point at the new

location. This can be done with the constraint solver as an

adaptation of the Path Kneading phase discussed in Section IV.

However, in the more general case of DEP bypass (for

example, when a pure ROP payload is used, with no mapped

shellcode), future work is required to solve the ROP chain

transplant problem.

Bypassing ASLR is similar. One way to bypass ASLR, in

the absence of DEP, is to overwrite the instruction pointer

to point to jmp *%reg with a register %reg referring to

a register location that currently points to the shellcode. A

typical instance of the instruction is jmp *%esp. For the

ShellSwap system, the modified exploit is able to bypass the

ASLR protection if 1) the original exploit is able to bypass

ASLR and 2) the beginning of the replacement shellcode is

placed at the same start address as the shellcode in the original

exploit (to which control flow is transferred after DEP bypass,

for example). In this way, when the program dereferences

a function pointer or returns a function, it will jump to the

address of the start of the original shellcode, which is also the

start of the replacement shellcode, and the modified exploit will

succeed. Again, the final shellcode location can be modified

through an adaptation of the Path Kneading phase.

More complex cases, including exploits that require an

information disclosure step (to break ASLR), are currently

not supported by ShellSwap. We plan to explore these in future

work, and would welcome collaboration in this area.

C. Future Work

We plan to explore, and hope to see other researchers

investigate, four main areas of future work.

First, ShellSwap can be extended to deal with encrypted,

packed, or obfuscated traffic. In theory, our approach can handle

these cases, because we assume knowledge the encryption key

and because the decryption/decoding/deobfuscation functional-

ity is in the original binary. However, the exploration of cases

that do not assume knowledge of the encryption key would

be interesting (albeit probably impossible in cryptographically-

secure cases). A further generalization of this is the ability to

successfully transplant shellcode in the presence of nondeter-

minism. Currently, ShellSwap cannot handle nondeterministic

behavior, and some fundamental problems would need to be

addressed to enable its operation on this.

Second, it would be interesting to make ShellSwap usable

in an on-line capacity, where instead of modifying exploits

and launching them at a later date, ShellSwap could perform

the exploit live against the remote system, modifying it as

appropriate based on that system’s operation. Symbolic tracing

is the current bottleneck of achieving this capability, but it can

likely be improved by leveraging optimizations from related

work [8, 25, 28]. Interestingly, the ability to function on-line

would allow ShellSwap to reason about information disclosure

in the course of an exploit to defeat ASLR, which is something

that is not currently possible.

Third, the extension of ShellSwap to the ROP chain

transplant problem would be an interesting future direction.

Related work in the field of automatic ROP payload generation

can be leveraged toward this end [27, 29].

Finally, ShellSwapcan be expanded to support the generation

of shellcode that is semantically equivalent to the replacement

shellcode while having different contents to satisfy path

constraints. Such shellcode polymorphism would increase

the cases in which ShellSwap can resolve path conflicts.

For example, we could consider building up a dictionary of

“instruction synonyms”, or creating templates to interchange

instructions without changing the semantics.

VIII. RELATED WORK

A. Automatic Exploit Generation

An exploit is valuable to attackers only when it suits attack-

ers’ specific goal. The technique of automatically generating

an exploit with a piece of shellcode is called automatic exploit

generation (AEG) [7, 11, 20, 27]. Those work are mostly

based on dynamic symbolic execution. AEG is closely related

to ShellSwap in the sense that they both take a vulnerable

program and a piece of shellcode and generate a viable exploit.

Helaan et al. [17] proposed how to place shellcode in

memory: scan through the memory and find symbolic memory

gaps that are big enough to hold the entire piece of shellcode.

For each gap, they try to put shellcode at different offsets by

constraining symbolic memory bytes beginning at that offset

to the actual bytes of the shellcode. This procedure continues

until the shellcode is put in a memory gap or all gaps have

been tried.

As we have demonstrated in our evaluation, AEG techniques

are not suitable for shellcode transplanting, as they lack prin-

cipled approach to diagnose and resolve conflicts imposed by

replacement shellcode, and must resort to symbolic exploration.

Our system makes it possible to adapt and retrofit an existing

exploit to different instances of shellcode efficiently.

B. Intrusion Detection

In ShellSwap we detect attacks triggering software vulnera-

bilities and capture exploits by enforcing a set of taint-based

security policies during dynamic symbolic tracing. Traditionally,

taint tracking implemented on dynamic binary instrumentation

frameworks (e.g. Pin [22] and Valgrind [23]) is used to

detect attacks during runtime, Xu et al. [32], Autograph[19],

Vigilante [14], and Bouncer [13] are all reasonable choices.

While those solutions are more performant than symbolic

tracing, ShellSwap cannot use them as they do not record

path constraints, which are vital to our approach.

C. Manual Ricochet Attacks in the Wild

Ricochet attacks are widely adopted in competitive attack-

defense contests today. The CTF team Shellphish has stated at

DEF CON:



“Stealing and replaying exploits has become very

popular; basically, it is the main way in which most

teams attack others these days. I think that, during

the last DEF CON, a majority of our flags (aka

points) were coming from running ‘stolen’ exploits.”

The CTF team PPP has also stated they inspected network

traffic to find new vulnerabilities, which helped them score

points and win DEF CON CTF in 2013 and 2014.

However, while the concept of ricochet attacks is well-known

within the hacking-competition community [2, 4], it does not

appear to have received much direct attention elsewhere. To

the best of the knowledge, our system is the first end-to-end

automatic ricochet attack generation system.

IX. CONCLUSION

In this paper, we introduce the automatic shellcode trans-

planting problem. Given a program, an exploit and a piece of

shellcode, this problem asks how to automatically generate a

new exploit that targets the potentially unknown vulnerability

present in the program and executes the given shellcode.

We also propose ShellSwap, which is the system for

automatic shellcode transplant for remote exploits. To our best

knowledge, the ShellSwap system is the first automatic system

that generally apply different shellcode on the exploits for

unknown vulnerabilities. In our experiment, we evaluated the

ShellSwap system on a combination of 20 exploits and 5 pieces

of shellcode that are independently developed and different

from the original exploit. Among the 100 test cases, our

ShellSwap system successfully generated 88% of the exploits.

Our results imply that exploit generation no longer requires

delicate exploit skills. For those victims who are not familiar

with exploit knowledge, they can also generate their exploits.
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